首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Auxin in the Cambium and its Differentiating Derivatives   总被引:2,自引:0,他引:2  
Cambium and differentiating xylem and phloem tissues from thetrunks of trees of Acer pseudoplatanus L., Fraxinus excelsiorL., and Populus tremula L. were extracted with ether and testedfor auxin, which was found on chromatograms of the acidic fractionat an Rf corresponding to that of indol-3yl-acetic acid in fivesolvent systems. In addition, small amounts of auxin with ahigher Rf in ammoniacal isopropanol were found in phloem samples.The amounts of auxin were greatest in xylem samples, less inthe cambium, and least in phloem. The differences, which cannotbe explained in terms of differential losses during extractionand purification, suggest that auxin is actually formed in differentiatingxylem tissue. The significance of these results is discussed.  相似文献   

2.
3.
《Current biology : CB》2020,30(24):4857-4868.e6
  1. Download : Download high-res image (113KB)
  2. Download : Download full-size image
  相似文献   

4.
5.

Background

Local activation of Rho GTPases is important for many functions including cell polarity, morphology, movement, and growth. Although a number of molecules affecting Rho-of-Plants small GTPase (ROP) signalling are known, it remains unclear how ROP activity becomes spatially organised. Arabidopsis root hair cells produce patches of ROP at consistent and predictable subcellular locations, where root hair growth subsequently occurs.

Methodology/Principal Findings

We present a mathematical model to show how interaction of the plant hormone auxin with ROPs could spontaneously lead to localised patches of active ROP via a Turing or Turing-like mechanism. Our results suggest that correct positioning of the ROP patch depends on the cell length, low diffusion of active ROP, a gradient in auxin concentration, and ROP levels. Our theory provides a unique explanation linking the molecular biology to the root hair phenotypes of multiple mutants and transgenic lines, including OX-ROP, CA-rop, aux1, axr3, tip1, eto1, etr1, and the triple mutant aux1 ein2 gnom eb.

Conclusions/Significance

We show how interactions between Rho GTPases (in this case ROPs) and regulatory molecules (in this case auxin) could produce characteristic subcellular patterning that subsequently affects cell shape. This has important implications for research on the morphogenesis of plants and other eukaryotes. Our results also illustrate how gradient-regulated Turing systems provide a particularly robust and flexible mechanism for pattern formation.  相似文献   

6.
7.
The indeterminate nature of plant growth and development depends on the stem cell system found in meristems. The Arabidopsis thaliana vascular meristem includes procambium and cambium. In these tissues, cell–cell signaling, mediated by a ligand-receptor pair made of the TDIF (for tracheary element differentiation inhibitory factor) peptide and the TDR/PXY (for TDIF RECEPTOR/ PHLOEM INTERCALATED WITH XYLEM) membrane protein kinase, promotes proliferation of procambial cells and suppresses their xylem differentiation. Here, we report that a WUSCHEL-related HOMEOBOX gene, WOX4, is a key target of the TDIF signaling pathway. WOX4 is expressed preferentially in the procambium and cambium, and its expression level was upregulated upon application of TDIF in a TDR-dependent manner. Genetic analyses showed that WOX4 is required for promoting the proliferation of procambial/cambial stem cells but not for repressing their commitment to xylem differentiation in response to the TDIF signal. Thus, at least two intracellular signaling pathways that diverge after TDIF recognition by TDR might regulate independently the behavior of vascular stem cells. Detailed observations in loss-of-function mutants revealed that TDIF-TDR-WOX4 signaling plays a crucial role in the maintenance of the vascular meristem organization during secondary growth.  相似文献   

8.
9.
10.
Auxin signaling in Arabidopsis leaf vascular development   总被引:13,自引:0,他引:13  
  相似文献   

11.
12.
THE thymus is necessary for the normal development of cell-mediated immunity in mice as shown by the immunological defects after neonatal thymectomy1. Thymus cells themselves can be stimulated by allogeneic lymphoid cells in mixed leucocyte reaction (MLR)2 and become killer cells or cytotoxic lymphocytes after stimulation with allogeneic spleen cells in vitro (H. Wagner and M. Feldmann, unpublished work) and in vivo3,4. This suggests that the thymus as well as peripheral lymphoid tissues contain T cells which can be stimulated by foreign histocompatibility antigen to divide and differentiate into the cytotoxic lymphocytes which mediate cellular immunity. There have been suggestions that thymus cells might be stimulated to divide by “self” antigen, as well as foreign cells: incorporation of 3H-thymidine above background levels has been found in cultures with syngeneic spleen and thymus cells of adult rats5, although the experiments do not determine whether thymus or spleen cells have been stimulated. In contrast to these experiments, Howe et al. reported that only thymus cells of neonatal CBA mice reacted to allogeneic and syngeneic spleen cells of adult animals in “one way” MLR cultures6,7. Whether the reaction of neonatal thymus cells to syngeneic adult spleen cells is recognition of “self” antigens is uncertain, since spleens of adult mice could carry antigens which do not occur in neonatal animals and are therefore “unknown” for neonatal thymus cells. We demonstrate here that neonatal thymus cells do not react to 4-day-old CBA spleen cells, but adult thymus cells do react against both allogeneic and syngeneic adult spleen cells.  相似文献   

13.
生长素对拟南芥叶片发育调控的研究进展   总被引:5,自引:0,他引:5  
叶片(包括子叶)是茎端分生组织产生的第一类侧生器官,在植物发育中具有重要地位。早期叶片发育包括三个主要过程:叶原基的起始,叶片腹背性的建立和叶片的延展。大量证据表明叶片发育受到体内遗传机制和体外环境因子的双重调节。植物激素,尤其是生长素在协调体内外调节机制中起着不可或缺的作用。生长素的稳态调控、极性运输和信号转导影响叶片发育的全过程。本文着重介绍生长素在叶片生长发育和形态建成中的调控作用,试图了解复杂叶片发育调控网络。  相似文献   

14.
李林川  瞿礼嘉 《植物学报》2006,23(5):459-465
叶片(包括子叶)是茎端分生组织产生的第一类侧生器官, 在植物发育中具有重要地位。早期叶片发育包括三个主要过程: 叶原基的起始, 叶片腹背性的建立和叶片的延展。大量证据表明叶片发育受到体内遗传机制和体外环境因子的双重调节。植物激素, 尤其是生长素在协调体内外调节机制中起着不可或缺的作用。生长素的稳态调控、极性运输和信号转导影响叶片发育的全过程。本文着重介绍生长素在叶片生长发育和形态建成中的调控作用, 试图了解复杂叶片发育调控网络。  相似文献   

15.
16.
17.
植物金属蛋白酶Ft SH基因家族在拟南芥(Arabidopsis thaliana)中有12个成员,目前各基因的功能还不清楚。该文利用细胞生物学和遗传学方法初步分析了拟南芥FtSH4在叶片衰老中的功能。ftsh4-4突变体叶片中H_2O_2含量及细胞死亡率增加,叶绿素含量降低;此外,突变体中过氧化物酶基因表达上调,过氧化物酶活性增加,出现早衰表型。外源抗氧化剂As A、内源和外源生长素能够通过降低ftsh4-4体内H_2O_2含量、过氧化物酶基因的表达及过氧化物酶活性,恢复ftsh4-4叶片的衰老表型。ftsh4-4突变体中生长素响应因子基因ARF2和ARF7上调表达,外源生长素和抗氧化剂能够降低ARF2和ARF7的表达,并且ARF2突变能够降低ftsh4-4的H_2O_2含量并恢复其早衰表型。以上结果表明,FtSH4基因通过生长素与活性氧在调控植物叶片衰老中起重要作用。  相似文献   

18.
19.
Procambial and cambial stem cells provide the initial cells that allow the formation of vascular tissues. WOX4 and WOX14 have been shown to act redundantly to promote procambial cell proliferation and differentiation. Gibberellins (GAs), which have an important role in wood formation, also stimulate cambial cell division. Here we show that the loss of WOX14 function phenocopies some traits of GA‐deficient mutants that can be complemented by exogenous GA application, whereas WOX14 overexpression stimulates the expression of GA3ox anabolism genes and represses GA2ox catabolism genes, promoting the accumulation of bioactive GA. More importantly, our data clearly indicate that WOX14 but not WOX4 promotes vascular cell differentiation and lignification in inflorescence stems of Arabidopsis.  相似文献   

20.
Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we analyzed roles of the less characterised Arabidopsis PIN6 auxin transporter. PIN6 is auxin-inducible and is expressed during multiple auxin–regulated developmental processes. Loss of pin6 function interfered with primary root growth and lateral root development. Misexpression of PIN6 affected auxin transport and interfered with auxin homeostasis in other growth processes such as shoot apical dominance, lateral root primordia development, adventitious root formation, root hair outgrowth and root waving. These changes in auxin-regulated growth correlated with a reduction in total auxin transport as well as with an altered activity of DR5-GUS auxin response reporter. Overall, the data indicate that PIN6 regulates auxin homeostasis during plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号