首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Alternative splicing is typically controlled by complexes of regulatory proteins that bind to sequences within or flanking variable exons. The identification of regulatory sequence motifs and the characterization of sequence motifs bound by splicing regulatory proteins have been essential to predicting splicing regulation. The activation-responsive sequence (ARS) motif has previously been identified in several exons that undergo changes in splicing upon T cell activation. hnRNP L binds to this ARS motif and regulates ARS-containing exons; however, hnRNP L does not function alone. Interestingly, the proteins that bind together with hnRNP L differ for different exons that contain the ARS core motif. Here we undertake a systematic mutational analysis of the best characterized context of the ARS motif, namely the ESS1 sequence from CD45 exon 4, to understand the determinants of binding specificity among the components of the ESS1 regulatory complex and the relationship between protein binding and function. We demonstrate that different mutations within the ARS motif affect specific aspects of regulatory function and disrupt the binding of distinct proteins. Most notably, we demonstrate that the C77G polymorphism, which correlates with autoimmune disease susceptibility in humans, disrupts exon silencing by preventing the redundant activity of hnRNPs K and E2 to compensate for the weakened function of hnRNP L. Therefore, these studies provide an important example of the functional relevance of combinatorial function in splicing regulation and suggest that additional polymorphisms may similarly disrupt function of the ESS1 silencer.  相似文献   

2.
Cereal seeds are versatile platforms for the production of recombinant proteins because they provide a stable environment for protein accumulation. Endogenous seed storage proteins, however, include several prolamin-type polypeptides that aggregate and crosslink via intermolecular disulfide bridges, which could potentially interact with multimeric recombinant proteins such as antibodies, which assemble in the same manner. We investigated this possibility by sequentially extracting a human antibody expressed in maize endosperm, followed by precipitation in vitro with zein. We provide evidence that a significant proportion of the antibody pool interacts with zein and therefore cannot be extracted using non-reducing buffers. Immunolocalization experiments demonstrated that antibodies targeted for secretion were instead retained within zein bodies because of such covalent interactions. Our findings suggest that the production of soluble recombinant antibodies in maize could be enhanced by eliminating or minimizing interactions with endogenous storage proteins.  相似文献   

3.
In the postgenomic era, many researchers and organizations have been engaged in structural and functional analyses of proteins. As a part of these efforts, searching for small organic compounds that bind specifically to target proteins is quite important. In this study, we have developed a rational strategy for ligand discovery based on the three-dimensional structures of target proteins, which were elucidated by X-ray crystallography and nuclear magnetic resonance spectroscopy. The strategy has three features: (i) rapid selection of candidate compounds by in silico screening, (ii) automated preparation of sample solutions with robotics, and (iii) reliable evaluation of the candidates with surface plasmon resonance. Applying the strategy to a protein, At2g24940 from Arabidopsis thaliana, we discovered four small ligands out of a commercially available library of about 150 000 compounds. Although these compounds had only weak affinities to the target protein, with dissociation constants ranging from 68 to 120 microM, they apparently possess common structural features. They would be leads for the development of specific inhibitors/drugs for At2g24940, and provide important clues toward elucidation of the protein function.  相似文献   

4.
The current pace of structural biology now means that protein three-dimensional structure can be known before protein function, making methods for assigning homology via structure comparison of growing importance. Previous research has suggested that sequence similarity after structure-based alignment is one of the best discriminators of homology and often functional similarity. Here, we exploit this observation, together with a merger of protein structure and sequence databases, to predict distant homologous relationships. We use the Structural Classification of Proteins (SCOP) database to link sequence alignments from the SMART and Pfam databases. We thus provide new alignments that could not be constructed easily in the absence of known three-dimensional structures. We then extend the method of Murzin (1993b) to assign statistical significance to sequence identities found after structural alignment and thus suggest the best link between diverse sequence families. We find that several distantly related protein sequence families can be linked with confidence, showing the approach to be a means for inferring homologous relationships and thus possible functions when proteins are of known structure but of unknown function. The analysis also finds several new potential superfamilies, where inspection of the associated alignments and superimpositions reveals conservation of unusual structural features or co-location of conserved amino acids and bound substrates. We discuss implications for Structural Genomics initiatives and for improvements to sequence comparison methods.  相似文献   

5.
One of the most critical modifications affecting the N‐terminus of proteins is N‐myristoylation. This irreversible modification affects the membrane‐binding properties of crucial proteins involved in signal transduction cascades. This cotranslational modification, catalyzed by N‐myristoyl transferase, occurs both in lower and higher eukaryotes and is a validated therapeutic target for several pathologies. However, this lipidation proves very difficult to be evidenced in vivo even with state‐of‐the‐art proteomics approaches or bioinformatics tools. A large part of N‐myristoylated proteins remains to be discovered and the rules of substrate specificity need to be established in each organism. Because the peptide substrate recognition occurs around the first eight residues, short peptides are used for modeling the reaction in vitro. Here, we provide a novel approach including a dedicated peptide array for high‐throughput profiling protein N‐myristoylation specificity. We show that myristoylation predictive tools need to be fine‐tuned to organisms and that their poor accuracy should be significantly enhanced. This should lead to strongly improved knowledge of the number and function of myristoylated proteins occurring in any proteome.  相似文献   

6.
Izrailev S  Farnum MA 《Proteins》2004,57(4):711-724
The problem of assigning a biochemical function to newly discovered proteins has been traditionally approached by expert enzymological analysis, sequence analysis, and structural modeling. In recent years, the appearance of databases containing protein-ligand interaction data for large numbers of protein classes and chemical compounds have provided new ways of investigating proteins for which the biochemical function is not completely understood. In this work, we introduce a method that utilizes ligand-binding data for functional classification of enzymes. The method makes use of the existing Enzyme Commission (EC) classification scheme and the data on interactions of small molecules with enzymes from the BRENDA database. A set of ligands that binds to an enzyme with unknown biochemical function serves as a query to search a protein-ligand interaction database for enzyme classes that are known to interact with a similar set of ligands. These classes provide hypotheses of the query enzyme's function and complement other computational annotations that take advantage of sequence and structural information. Similarity between sets of ligands is computed using point set similarity measures based upon similarity between individual compounds. We present the statistics of classification of the enzymes in the database by a cross-validation procedure and illustrate the application of the method on several examples.  相似文献   

7.
The Sonic hedgehog (Shh) signaling pathway controls a variety of developmental processes and is implicated in tissue homeostasis maintenance and neurogenesis in adults. Recently, we identified Ulk3 as an active kinase able to positively regulate Gli proteins, mediators of the Shh signaling in mammals. Here, we provide several lines of evidence that Ulk3 participates in the transduction of the Shh signal also independently of its kinase activity. We demonstrate that Ulk3 through its kinase domain interacts with Suppressor of Fused (Sufu), a protein required for negative regulation of Gli proteins. Sufu blocks Ulk3 autophosphorylation and abolishes its ability to phosphorylate and positively regulate Gli proteins. We show that Shh signaling destabilizes the Sufu-Ulk3 complex and induces the release of Ulk3. We demonstrate that the Sufu-Ulk3 complex, when co-expressed with Gli2, promotes generation of the Gli2 repressor form, and that reduction of the Ulk3 mRNA level in Shh-responsive cells results in higher potency of the cells to transmit the Shh signal. Our data suggests a dual function of Ulk3 in the Shh signal transduction pathway and propose an additional way of regulating Gli proteins by Sufu, through binding to and suppression of Ulk3.  相似文献   

8.
Despite astounding diversity in their structure and function, proteins are constructed from 22 protein or ‘canonical’ amino acids. Hundreds of amino acid analogues exist; many occur naturally in plants, some are synthetically produced or can be produced in vivo by oxidation of amino acid side-chains. Certain structural analogues of the protein amino acids can escape detection by the cellular machinery for protein synthesis and become misincorporated into the growing polypeptide chain of proteins to generate non-native proteins. In this review we seek to provide a comprehensive overview of the current knowledge on the biosynthetic incorporation of amino acid analogues into proteins by mammalian cells. We highlight factors influencing their incorporation and how the non-native proteins generated can alter cell function. We examine the ability of amino acid analogues, representing those commonly found in damaged proteins in pathological tissues, to be misincorporated into proteins by cells in vitro, providing us with a useful tool in the laboratory to generate modified proteins representing those present in a wide-range of pathologies. We also discuss the evidence for amino acid analogue incorporation in vivo and its association with autoimmune symptoms. We confine the review to studies in which the synthetic machinery of cell has not been modified to accept non-protein amino acids.  相似文献   

9.
The tubulin cofactor C domain-containing protein TbRP2 is a basal body (centriolar) protein essential for axoneme formation in the flagellate protist Trypanosoma brucei, the causal agent of African sleeping sickness. Here, we show how TbRP2 is targeted and tethered at mature basal bodies and provide novel insight into TbRP2 function. Regarding targeting, understanding how several hundred proteins combine to build a microtubule axoneme is a fundamental challenge in eukaryotic cell biology. We show that basal body localization of TbRP2 is mediated by twinned, N-terminal TOF (TON1, OFD1, and FOP) and LisH motifs, motifs that otherwise facilitate localization of only a few conserved proteins at microtubule-organizing centers in animals, plants, and flagellate protists. Regarding TbRP2 function, there is a debate as to whether the flagellar assembly function of specialized, centriolar tubulin cofactor C domain-containing proteins is processing tubulin, the major component of axonemes, or general vesicular trafficking in a flagellum assembly context. Here we report that TbRP2 is required for the recruitment of T. brucei orthologs of MKS1 and MKS6, proteins that, in animal cells, are part of a complex that assembles at the base of the flagellum to regulate protein composition and cilium function. We also identify that TbRP2 is detected by YL1/2, an antibody classically used to detect α-tubulin. Together, these data suggest a general processing role for TbRP2 in trypanosome flagellum assembly and challenge the notion that TbRP2 functions solely in assessing tubulin “quality” prior to tubulin incorporation into the elongating axoneme.  相似文献   

10.
Fluorescent proteins have revolutionized modern biology with their ability to report the presence of tagged proteins in living systems. Although several fluorescent proteins have been described in which the excitation and emission properties can be modulated by external triggers, no fluorescent proteins have been described that can be activated from a silent dark state to a bright fluorescent state directly by the activity of an enzyme. We have developed a version of GFP in which fluorescence is completely quenched by appendage of a hydrophobic quenching peptide that tetramerizes GFP and prevents maturation of the chromophore. The fluorescence can be fully restored by catalytic removal of the quenching peptide, making it a robust reporter of proteolysis. We have demonstrated the utility of this uniquely dark state of GFP as a genetically encoded apoptosis reporter that monitors the function of caspases, which catalyze the fate-determining step in programmed cell death. Caspase Activatable-GFP (CA-GFP) can be activated both in vitro and in vivo, resulting in up to a 45-fold increase in fluorescent signal in bacteria and a 3-fold increase in mammalian cells. We used CA-GFP successfully to monitor real-time apoptosis in mammalian cells. This dark state of GFP may ultimately serve as a useful platform for probes of other enzymatic processes.  相似文献   

11.
We previously reported a protein knockdown system for HaloTag-fused proteins using hybrid small molecules consisting of alkyl chloride, which binds covalently to HaloTag, linked to BE04 (2), a bestatin (3) derivative with an affinity for cellular inhibitor of apoptosis protein 1 (cIAP1, a kind of ubiquitin ligase). This system addressed several limitations of prior protein knockdown technology, and was applied to degrade two HaloTag-fused proteins. However, the degradation activity of these hybrid small molecules was not potent. Therefore, we set out to improve this system. We report here the design, synthesis and biological evaluation of novel hybrid compounds 4a and 4b consisting of alkyl chloride linked to IAP antagonist MV1 (5). Compounds 4a and 4b were confirmed to reduce the levels of HaloTag-fused tumor necrosis factor α (HaloTag-TNFα), HaloTag-fused cell division control protein 42 (HaloTag-Cdc42), and unfused HaloTag protein in living cells more potently than did BE04-linked compound 1b. Analysis of the mode of action revealed that the reduction of HaloTag-TNFα is proteasome-dependent, and is also dependent on the linker structure between MV1 (5) and alkyl chloride. These compounds appear to induce ubiquitination at the HaloTag moiety of HaloTag-fused proteins. Our results indicate that these newly synthesized MV1-type hybrid compounds, 4a and 4b, are efficient tools for protein knockdown for HaloTag-fused proteins.  相似文献   

12.
Hsp40 chaperones bind and transfer substrate proteins to Hsp70s and regulate their ATPase activity. The interaction of Hsp40s with native proteins modifies their structure and function. A good model for this function is DnaJ, the bacterial Hsp40 that interacts with RepE, the repressor/activator of plasmid F replication, and together with DnaK regulates its function. We characterize here the structure of the DnaJ-RepE complex by electron microscopy, the first described structure of a complex between an Hsp40 and a client protein. The comparison of the complexes of DnaJ with two RepE mutants reveals an intrinsic plasticity of the DnaJ dimer that allows the chaperone to adapt to different substrates. We also show that DnaJ induces conformational changes in dimeric RepE, which increase the intermonomeric distance and remodel both RepE domains enhancing its affinity for DNA.  相似文献   

13.
Reduction of methionine sulfoxide (MetO) residues in proteins is catalyzed by methionine sulfoxide reductases A (MSRA) and B (MSRB), which act in a stereospecific manner. Catalytic properties of these enzymes were previously established mostly using low molecular weight MetO-containing compounds, whereas little is known about the catalysis of MetO reduction in proteins, the physiological substrates of MSRA and MSRB. In this work we exploited an NADPH-dependent thioredoxin system and determined the kinetic parameters of yeast MSRA and MSRB using three different MetO-containing proteins. Both enzymes showed Michaelis-Menten kinetics with the K(m) lower for protein than for small MetO-containing substrates. MSRA reduced both oxidized proteins and low molecular weight MetO-containing compounds with similar catalytic efficiencies, whereas MSRB was specialized for the reduction of MetO in proteins. Using oxidized glutathione S-transferase as a model substrate, we showed that both MSR types were more efficient in reducing MetO in unfolded than in folded proteins and that their activities increased with the unfolding state. Biochemical quantification and identification of MetO reduced in the substrates by mass spectrometry revealed that the increased activity was due to better access to oxidized MetO in unfolded proteins; it also showed that MSRA was intrinsically more active with unfolded proteins regardless of MetO availability. Moreover, MSRs most efficiently protected cells from oxidative stress that was accompanied by protein unfolding. Overall, this study indicates that MSRs serve a critical function in the folding process by repairing oxidatively damaged nascent polypeptides and unfolded proteins.  相似文献   

14.
Post-translational modifications play essential roles in regulating protein structure and function. Protein farnesyltransferase (FTase) catalyzes the biologically relevant lipidation of up to several hundred cellular proteins. Site-directed mutagenesis of FTase coupled with peptide selectivity measurements demonstrates that molecular recognition is determined by a combination of multiple interactions. Targeted randomization of these interactions yields FTase variants with altered and, in some cases, bio-orthogonal selectivity. We demonstrate that FTase specificity can be “tuned” using a small number of active site contacts that play essential roles in discriminating against non-substrates in the wild-type enzyme. This tunable selectivity extends in vivo, with FTase variants enabling the creation of bioengineered parallel prenylation pathways with altered substrate selectivity within a cell. Engineered FTase variants provide a novel avenue for probing both the selectivity of prenylation pathway enzymes and the effects of prenylation pathway modifications on the cellular function of a protein.  相似文献   

15.
Proteins are key players in most cellular processes. Therefore, their abundances are thought to be tightly regulated at the gene-expression level. Recent studies indicate, however, that steady-state cellular-protein concentrations correlate better across species than the levels of the corresponding mRNAs; this supports the existence of selective forces to maintain precise cellular-protein concentrations and homeostasis, even if gene-expression levels diverge. One of these forces might be the avoidance of protein aggregation because, in the cell, the folding of proteins into functional conformations might be in competition with anomalous aggregation into non-functional and usually toxic structures in a concentration-dependent manner. The data in the present work provide support for this hypothesis because, in E. coli, the experimental solubility of proteins correlates better with the cellular abundance than with the gene-expression levels. We found that the divergence between protein and mRNAs levels is low for high-abundance proteins. This suggests that because abundant proteins are at higher risk of aggregation, cellular concentrations need to be stringently regulated by gene expression.  相似文献   

16.
Construction and microscopic imaging of protein fusions to green fluorescent protein (GFP) have revolutionised our understanding of bacterial structure and function. We have undertaken a systematic study of the localisation of over 100 Bacillus subtilis proteins, following the development of high-throughput construction and analysis procedures. We focused on proteins linked in various ways to the DNA replication machinery, as well as on proteins exemplifying a range of other cellular functions and structures. The results validate the approach as a way of obtaining systematic protein localisation information. They also provide a range of novel biological insights, particularly through the identification of a number of proteins not previously known to be associated with the DNA replication factory.  相似文献   

17.
18.
Internal protein dynamics is essential for biological function. During evolution, protein divergence is functionally constrained: properties more relevant for function vary more slowly than less important properties. Thus, if protein dynamics is relevant for function, it should be evolutionary conserved. In contrast with the well-studied evolution of protein structure, the evolutionary divergence of protein dynamics has not been addressed systematically before, apart from a few case studies. X-Ray diffraction analysis gives information not only on protein structure but also on B-factors, which characterize the flexibility that results from protein dynamics. Here we study the evolutionary divergence of protein backbone dynamics by comparing the Cα flexibility (B-factor) profiles for a large dataset of homologous proteins classified into families and superfamilies. We show that Cα flexibility profiles diverge slowly, so that they are conserved at family and superfamily levels, even for pairs of proteins with nonsignificant sequence similarity. We also analyze and discuss the correlations among the divergences of flexibility, sequence, and structure. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. David Pollock]  相似文献   

19.
Intrinsically disordered proteins are very common in eukaryotes and thus understanding functional roles and factors which influence protein disorderness becomes very important. In this work, we ask whether global properties not directly related to the function of the proteins, like expression level and avoidance of aggregation, influence disorderness of proteins. We found that proteins expressed at higher levels tend to be less disordered, even within the same functional class. We also found that the correlation between expression level and evolutionary rate was significantly reduced for disordered proteins indicating the role of disorderness in preventing aggregation of highly expressed proteins, which are more susceptible to misfolding due to translational errors. We reconcile these seemingly opposing results based on the observation that the correlation between expression level and disorderness was significantly less for proteins involved in binding functions, suggesting that highly expressed proteins involved in binding functions utilize disordered regions to avoid aggregation. Our results show that disorderness is not just influenced by functional properties of proteins, but also by properties not directly related to their functions like expression level and avoidance of aggregation.  相似文献   

20.
The human family of ELMO domain-containing proteins (ELMODs) consists of six members and is defined by the presence of the ELMO domain. Within this family are two subclassifications of proteins, based on primary sequence conservation, protein size, and domain architecture, deemed ELMOD and ELMO. In this study, we used homology searching and phylogenetics to identify ELMOD family homologs in genomes from across eukaryotic diversity. This demonstrated not only that the protein family is ancient but also that ELMOs are potentially restricted to the supergroup Opisthokonta (Metazoa and Fungi), whereas proteins with the ELMOD organization are found in diverse eukaryotes and thus were likely the form present in the last eukaryotic common ancestor. The segregation of the ELMO clade from the larger ELMOD group is consistent with their contrasting functions as unconventional Rac1 guanine nucleotide exchange factors and the Arf family GTPase-activating proteins, respectively. We used unbiased, phylogenetic sorting and sequence alignments to identify the most highly conserved residues within the ELMO domain to identify a putative GAP domain within the ELMODs. Three independent but complementary assays were used to provide an initial characterization of this domain. We identified a highly conserved arginine residue critical for both the biochemical and cellular GAP activity of ELMODs. We also provide initial evidence of the function of human ELMOD1 as an Arf family GAP at the Golgi. These findings provide the basis for the future study of the ELMOD family of proteins and a new avenue for the study of Arf family GTPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号