首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Somatic mosaicism is something that is observed in everyday lives of cytogeneticists. Chromosome instability is one of the leading causes of large-scale genome variation analyzable since the correct human chromosome number was established in 1956. Somatic mosaicism is also a well-known fact to be present in cases with small supernumerary marker chromosomes (sSMC), i.e. karyotypes of 47,+mar/46. In this study, the data available in the literature were collected concerning the frequency mosaicism in different subgroups of patients with sSMC. Of 3124 cases with sSMC 1626 (52%) present with somatic mosaicism. Some groups like patients with Emanuel-, cat-eye- or i(18p)- syndrome only tend rarely to develop mosaicism, while in Pallister-Killian syndrome every patient is mosaic. In general, acrocentric and non-acrocentric derived sSMCs are differently susceptible to mosaicism; non-acrocentric derived ones are hereby the less stable ones. Even though, in the overwhelming majority of the cases, somatic mosaicism does not have any detectable clinical effects, there are rare cases with altered clinical outcomes due to mosaicism. This is extremely important for prenatal genetic counseling. Overall, as mosaicism is something to be considered in at least every second sSMC case, array-CGH studies cannot be offered as a screening test to reliably detect this kind of chromosomal aberration, as low level mosaic cases and cryptic mosaics are missed by that.  相似文献   

2.
There are only about 30 commercially available cell lines which include small supernumerary marker chromosomes (sSMC). As approximately 2.5 million people worldwide are carriers of an sSMC, this small number of immortalized cell lines is hard to understand. sSMC cell lines provide practically unlimited material for continuing studies e.g. to learn more about marker chromosome formation, or karyotypic evolution. To obtain information about their genetic content, in the present study we analyzed by FISH and multicolor-FISH approaches 19 sSMC cell lines obtained from the European Collection of Cell Cultures (ECACC). Microdissection and reverse painting, (sub-) centromere-specific multicolor-FISH (sub-)cenM-FISH, multicolor banding (MCB) and selected locus-specific FISH probes were applied. Thus, we were able to characterize comprehensively 14 out of 19 sSMC carrying cell lines; in the remaining five cases an sSMC could not be detected. Surprisingly, in six of the nine cell lines with sSMC previously characterized for their chromosomal origin by others, those results had to be revised. This has impact on the conclusions of previous studies, e.g. for uniparental disomy (UPD) in connection with sSMC.  相似文献   

3.
Here we report on three new patients with neocentric small supernumerary marker chromosomes (sSMC) derived from chromosome 2, 13 and 15, respectively. The sSMC(13) and sSMC(15) had inverted duplicated shapes and the sSMC(2) a ring chromosome shape. All three cases were clinically severely abnormal. A review of the available sSMC literature revealed that up to the present 73 neocentric sSMC cases including these three new cases have been reported. Seven of these cases were not characterized morphologically; in the remainder, 80% had an inverted duplication, 17% a ring and 3% a minute shape. 81% of the reported neocentric sSMC carriers showed severe, 12% moderate and 8% no clinical abnormalities. In summary, we report three more neocentric sSMC cases, provide a review on all up to now published cases, highlight their special characteristics and compare them to centric sSMC.  相似文献   

4.
Small supernumerary marker chromosomes (sSMC) are still a major problem in clinical cytogenetics as they are too small to be characterized for their chromosomal origin by traditional banding techniques, but require molecular cytogenetic techniques for their identification. Apart from the correlation of about one third of the sSMC cases with a specific clinical picture, i.e. the i(18p), der(22), i(12p) (Pallister Killian syndrome) and inv dup(22) (cat-eye) syndromes, most of the remaining sSMC have not yet been correlated with clinical syndromes. Recently, we reviewed the available >1600 sSMC cases (Liehr T, sSMC homepage: http://mti-n.mti.uni-jena.de/~huwww/MOL_ZYTO/sSMC.htm). A total of 387 cases (including the 45 new cases reported here) have been molecularly cytogenetically characterized with regard to their chromosomal origin, the presence of euchromatin, heterochromatin and satellite material. Based on analysis of these cases we present the first draft of a basic genotype-phenotype correlation for sSMC for all human chromosomes apart from the chromosomes Y, 10, 11 and 13.  相似文献   

5.
Whole chromosomal and segmental uniparental disomy (UPD) is one of the causes of imprinting disorder and other recessive disorders. Most investigations of UPD were performed only using cases with relevant phenotypic features and included few markers. However, the diagnosis of cases with segmental UPD requires a large number of molecular investigations. Currently, the accurate frequency of whole chromosomal and segmental UPD in a normal developing embryo is not well understood. Here, we present whole chromosome and segmental UPD analysis using single nucleotide polymorphism (SNP) microarray data of 173 mother-father-child trios (519 individuals) from six populations (including 170 HapMap trios). For two of these trios, we also investigated the possibility of shorter segmental UPD as a consequence of homologous recombination repair (HR) for DNA double strand breaks (DSBs) during the early developing stage using high-coverage whole-genome sequencing (WGS) data from 1000 Genomes Project. This could be overlooked by SNP microarray. We identified one obvious segmental paternal uniparental isodisomy (iUPD) (8.2 mega bases) in one HapMap sample from 173 trios using Genome-Wide Human SNP Array 6.0 (SNP6.0 array) data. However, we could not identify shorter segmental iUPD in two trios using WGS data. Finally, we estimated the rate of segmental UPD to be one per 173 births (0.578%) based on the UPD screening for 173 trios in general populations. Based on the autosomal chromosome pairs investigated, we estimate the rate of segmental UPD to be one per 3806 chromosome pairs (0.026%). These data imply the possibility of hidden segmental UPD in normal individuals.  相似文献   

6.
Sixteen newly established cell lines with small supernumerary marker chromosomes (sSMC) derived from chromosomes 1, 2, 4, 6, 7, 8, 14, 15, 16, 18, 19, 21, and 22 are reported. Two sSMC are neocentric and derived from 15q24.1-qter and 2q35-q36, respectively. Two further cases each present with two sSMC of different chromosomal origin. sSMC were characterized by multicolor fluorescence in situ hybridization for their chromosomal origin and genetic content. Moreover, uniparental disomy of the sister chromosomes of the sSMC was excluded in all nine cases studied for that reason. The 16 cases provide information to establish a refined genotype-phenotype correlation of sSMC and are available for future studies.  相似文献   

7.
Small supernumerary marker chromosomes (sSMC) are small additional chromosomes characterizable for their origin only by molecular cytogenetic approaches. sSMC have been reported previously in four types of syndromes associated with chromosomal imbalances: in approximately 150 cases with Turner syndrome, 26 cases with Down syndrome and only one case each with Klinefelter syndrome and "Triple-X"-syndrome. Here we report the second case with an sSMC detected in addition to a Klinefelter karyotype. Molecular cytogenetics applying centromere-specific multicolor FISH (cenM-FISH) and a specific subcentromere-specific (subcenM-FISH) probe set characterized the sSMC as a dic(9)(:p12-->q11.1::q11.1--> p11.1:). The reported patient was described with hypogonadism, gynaecomastia plus a bronchial carcinoma. The patient's clinical features are discussed in connection with other Klinefelter cases and possible consequences of presence of the sSMC(9). Furthermore, a suggestion is made for the mode of sSMC-formation in this case.  相似文献   

8.
Since the first report in 1993, an ectopic centromere, i.e. neocentromere formation, has been reported in more than 100 small supernumerary marker chromosomes (sSMC), in 7 instances of centromere repositioning, and in about a dozen cases with more complex chromosomal rearrangements. Here we report 2 new cases with centromere repositioning and 3 neocentric sSMC consisting exclusively of heterochromatic material. Yet, no centromere formation was reported for the regions 18q22.1 and Xq27.1~27.2 as it was observed in the 2 cases with centromere repositioning here; in both cases, cytogenetically an inversion was suggested. Two of the 3 neocentric sSMC were derived from a short arm of an acrocentric chromosome. The remainder neocentric sSMC case was previously reported and was stainable only by material derived from itself.  相似文献   

9.
We describe a female patient with a small supernumerary marker chromosome (sSMC) present in mosaic and characterized in detail by fluorescence in situ hybridization (FISH) using all 24 human whole chromosome painting probes, multicolor banding (MCB) and subcentromere specific multicolor FISH (subcenM-FISH). The sSMC was demonstrated to be derived from chromosome 5 and the karyotype of our patient was as follows: 47,XX,+mar.ish r(5)(::p13.2 approximately p13.3-->q11.2::) [60%]/46,XX [40%]. Partial trisomy for the proximal 5p and q chromosomal regions is a rare event. A critical region exists at 5p13 for the phenotype associated with duplication 5p. As far as we know, eight similar cases have been published up to now. We describe a new case which, to our knowledge, is the first characterized in such detail. The role of uniparental disomy (UPD) in cases of SMC is also discussed.  相似文献   

10.
One t(14q14q), three t(15q15q), two t(21q21q), and two t(22q22q) nonmosaic, apparently balanced, de novo Robertsonian translocation cases were investigated with polymorphic markers to establish the origin of the translocated chromosomes. Four cases had results indicative of an isochromosome: one t(14q14q) case with mild mental retardation and maternal uniparental disomy (UPD) for chromosome 14, one t(15q15q) case with the Prader-Willi syndrome and UPD(15), a phenotypically normal carrier of t(22q22q) with maternal UPD(22), and a phenotypically normal t(21q21q) case of paternal UPD(21). All UPD cases showed complete homozygosity throughout the involved chromosome, which is supportive of a postmeiotic origin. In the remaining four cases, maternal and paternal inheritance of the involved chromosome was found, which unambiguously implies a somatic origin. One t(15q15q) female had a child with a ring chromosome 15, which was also of probable postmeiotic origin as recombination between grandparental haplotypes had occurred prior to ring formation. UPD might be expected to result from de novo Robertsonian translocations of meiotic origin; however, all de novo homologous translocation cases, so far reported, with UPD of chromosomes 14, 15, 21, or 22 have been isochromosomes. These data provide the first direct evidence that nonmosaic Robertsonian translocations, as well as isochromosomes, are commonly the result of a mitotic exchange.  相似文献   

11.
Small supernumerary marker chromosomes (sSMC) are a morphological heterogeneous group of additional abnormal chromosomes that cannot be characterized alone by conventional banding cytogenetics. Molecular cytogenetic techniques are valuable tools for the accurate identification of sSMC and a prerequisite for sound genetic counseling based on refined genotype/phenotype correlation. We describe a new case of a retarded patient with an sSMC derived from chromosome 5. The characterization of the sSMC was done by subcentromere-specific multicolor (subcenM) fluorescence in-situ hybridization (FISH) and by full tilling resolution array analysis, after microdissection and amplification of the marker DNA. Uniparental disomy for normal sister chromosomes of the sSMC(5) was excluded. The karyotype was mos47,XX,+r(5)(::p11.1 → q12.1::)[70%]/46,XX[30%], being the trisomic region between 46.15 ∼ 49.56 Mb and 61.25 ∼ 61.335 Mb, a region known to harbor ∼45 annotated genes. Together with a review of the previously described cases of sSMC(5) and duplications involving the 5q proximal region, we can conclude that trisomy of the 5q11 region is associated with learning difficulties and speech delay.  相似文献   

12.
Rearrangements between homologous chromosomes are extremely rare and manifest mainly as monosomic or trisomic offsprings. There are remarkably few reports of balanced homologous chromosomal translocation t (22q; 22q) and only two cases of transmission of this balanced homohologous rearrangement from mother to normal daughter are reported. Robersonian translocation carriers in non-homologous chromosomes have the ability to have an unaffected child. However, it is not possible to have an unaffected child in cases with Robersonian translocations in homologous chromosomes. Carriers of homologous chromosome 22 translocations with maternal uniparental disomy do not have any impact on their phenotype. We are presenting a family with a history of multiple first trimester miscarriages and an unexpected inheritance of balanced homologous translocation of chromosome 22 with paternal uniparental disomy. There are no data available regarding the impact of paternal UPD 22 on the phenotype. We claim this to be the first report explaining that paternal UPD 22 does not impact the phenotype.  相似文献   

13.
We report studies on the etiology of uniparental disomy (UPD) in Silver-Russell syndrome (SRS) patients. Thirty-seven SRS families were typed with short tandem repeat markers from chromosomes 2, 7, 9, 14, and 16. UPD for these chromosomes has either been described in association with growth retardation or has been observed in confined placental mosaicism, a mechanism that may result in UPD. Maternal UPD7 was detected in three SRS patients, accounting for approximately 10% of the tested SRS patients. These results agree with previously published studies. The allelic distribution in one of the three families indicates complete isodisomy, whereas allelic patterns in the other two families are consistent with partial and complete heterodisomy, respectively, suggesting that, in the latter cases, UPD originates from maternal meiosis, whereas in the first case, it seems to be of mitotic origin. STR typing for UPD of chromosomes 2, 9, 14, and 16 showed no abnormalities. Our results demonstrate the necessity of screening SRS patients for UPD7, although the effect of UPD7 cannot be correlated with the SRS phenotype as yet. An association between UPD for the other investigated chromosomes and SRS seems to be negligible. Received: 13 February 1997 / Accepted: 13 May 1997  相似文献   

14.
Rearrangements of the acrocentric chromosomes (Robertsonian translocations and isochromosomes) are associated with an increased risk of aneuploidy. Given this, and the large number of reported cases of uniparental disomy (UPD) associated with an acrocentric rearrangement, carriers are presumed to be at risk for UPD. However, an accurate risk estimate for UPD associated with these rearrangements is lacking. A total of 174 prenatally identified acrocentric rearrangements, including both Robertsonian translocations and isochromosomes, were studied prospectively to identify UPD for the chromosomes involved in the rearrangements. The overall goal of the study was to provide an estimate of the risk of UPD associated with nonhomologous Robertsonian translocations and homologous acrocentric rearrangements. Of the 168 nonhomologous Robertsonian translocations studied, one showed UPD for chromosome 13, providing a risk estimate of 0.6%. Four of the six homologous acrocentric rearrangements showed UPD, providing a risk estimate of 66%. These cases have also allowed delineation of the mechanisms involved in producing UPD unique to Robertsonian translocations. Given the relatively high risk for UPD in prenatally identified Robertsonian translocations and isochromosomes, UPD testing should be considered, especially for cases involving the acrocentric chromosomes 14 and 15, in which UPD is associated with adverse clinical outcomes.  相似文献   

15.
We present prenatal diagnosis of mosaicism for a small supernumerary marker chromosome (sSMC) derived from chromosome 22 associated with cat eye syndrome (CES) using cultured amniocytes in a pregnancy with fetal microcephaly, intrauterine growth restriction, left renal hypoplasia, total anomalous pulmonary venous return with dominant right heart and right ear deformity. The sSMC was bisatellited and dicentric, and was characterized by multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (aCGH). The SALSA MLPA P250-B1 DiGeorge Probemix showed duplication of gene dosage in the CES region. aCGH showed a 1.26-Mb duplication at 22q11.1–q11.21 encompassing CECR1CECR7. The sSMC was likely inv dup(22) (q11.21). Prenatal diagnosis of an sSMC(22) at amniocentesis should alert CES. MLPA, aCGH and fetal ultrasound are useful for rapid diagnosis of CES in case of prenatally detected sSMC(22).  相似文献   

16.
Uniparental disomy (UPD) is the occurrence of both homologous chromosomes from one parent. Maternal UPD(16) is the most often reported UPD other than UPD(15); almost all cases are associated with confined placental mosaicism (CPM). Most of maternal UPD(16) cases are characterised by intrauterine growth retardation (IUGR) and different congenital malformations. Maternal UPD(16) has therefore been suspected to have clinical effects: however, the lack of uniqueness and specificity of the birth defects observed suggests that the phenotype may be related in parts to placental insufficiency. We report on a new case of maternal UPD(16) associated with low level trisomy 16 mosaicism in placenta and fetus. IUGR was noticed at 19 gestational weeks and the fetus died intrauterine. Apart from different craniofacial dysmorphisms she showed anal atresia. While IUGR is probably associated with trisomy 16 mosaicism, anal atresia is more characteristic for maternal UPD( 16). Considering the features in our patient as well as those in maternal UPD (16) cases from the literature, indications for UPD (16) testing can be defined: They include trisomy 16 mosaicism, IUGR and congenital anomalies (anal atresia, congenital heart defects). However, there is an overlap of clinical signs in mosaic trisomy 16 cases mosaic for maternal UPD(16) as opposed to those mosaic for biparental disomy 16. The management of trisomy 16 pregnancies should not differ from those in which maternal UPD(16) is confirmed. Therefore, a prenatal testing for UPD(16) is not useful, but it should be offered postnatally. The molecular genetic proof of maternal UPD(16) excludes an increased recurrence risk for the family for further pregnancies.  相似文献   

17.
Maternal uniparental disomy for the entire chromosome 7 (matUPD7) has been reported several times in Silver-Russell syndrome (SRS) and growth-restricted patients. Here we present our results from the analysis of an abortion with confined placental mosaicism (CPM) for trisomy 7 which showed a maternal meiotic origin of the trisomy in the placenta and rescue to maternal UPD7 in foetal membrane. Furthermore, two newly detected SRS cases with maternal UPD7 revealed isodisomy and partial heterodisomy, respectively. Summarising these results with those published previously on the origin of UPD7, similar numbers of isodisomy (n=11) and cases with complete or partial heterodisomy (n=12) have been reported. In respect to the different formation mechanisms of UPD, complete isodisomy should be the result of a post-zygotic mitotic segregation error, whereas heterodisomic UPDs should be caused by trisomic rescue after meiotic non-disjunction events. In maternal UPD7, 50% of cases seem to be caused by post-zygotic mitotic segregation errors, which is similar to the situation in trisomy 7. This result corresponds to the situation in trisomy 8 but is in contrast to observations in the frequent aneuploidies. Thus, the different findings in these aberrations reflect the presence of multiple factors that act to ensure normal segregation, varying in importance for each chromosome.  相似文献   

18.
Vundinti BR  Korgaonkar S  Ghosh K 《Gene》2012,498(1):128-130
Small supernumerary marker chromosomes (sSMCs) are a heterogeneous group with regards to their clinical effects as well as their chromosomal origin and their shape. The sSMCs are associated with mental retardation and dysmorphic features. Multiple sSMCs are rarely reported. We report four sSMCs in a case of dysmorphic features and intellectual disabilities. Among the four sSMCs, one sSMC confirmed to be chromosome 5 derived sSMC using fluorescence in situ hybridization (FISH) and spectral karyotyping (SKY). The sSMCs were de novo originated as parental chromosomal analysis revealed normal karyotypes. The sSMC derived from chromosome 5 might be associated with mental retardation and dysmorphic features in the present case. However the remaining three sSMCs might have originated from repetitive sequences of chromosomes.  相似文献   

19.
Supernumerary chromosomes sporadically arise in many eukaryotic species as a result of genomic rearrangements. If present in a substantial part of species population, those are called B chromosomes, or Bs. This is the case for 70 mammalian species, most of which are rodents. In humans, the most common types of extra chromosomes, sSMCs (small supernumerary marker chromosomes), are diagnosed in approximately 1 of 2000 postnatal cases. Due to low frequency in population, human sSMCs are not considered B chromosomes. Genetic content of both B-chromosomes and sSMCs in most cases remains understudied. Here, we apply microdissection of single chromosomes with subsequent low-pass sequencing on Ion Torrent PGM and Illumina MiSeq to identify unique and repetitive DNA sequences present in a single human sSMC and several B chromosomes in mice Apodemus flavicollis and Apodemus peninsulae. The pipeline for sequencing data analysis was made available in Galaxy interface as an addition to previously published command-line version. Human sSMC was attributed to the proximal part of chromosome 15 long arm, and breakpoints leading to its formation were located into satellite DNA arrays. Genetic content of Apodemus B chromosomes was species-specific, and minor alterations were observed in both species. Common features of Bs in these Apodemus species were satellite DNA and ERV enrichment, as well as the presence of the vaccinia-related kinase gene Vrk1. Understanding of the non-essential genome elements content provides important insights into genome evolution in general.  相似文献   

20.
Here a new fluorescence in situ hybridization (FISH-) based probe set is presented and its possible applications are highlighted in 34 exemplary clinical cases. The so-called pericentric-ladder-FISH (PCL-FISH) probe set enables a characterization of chromosomal breakpoints especially in small supernumerary marker chromosomes (sSMC), but can also be applied successfully in large inborn or acquired derivative chromosomes. PCL-FISH was established as 24 different chromosome-specific probe sets and can be used in two- up multicolor-FISH approaches. PCL-FISH enables the determination of a chromosomal breakpoint with a resolution between 1 and ~10 megabasepairs and is based on locus-specific bacterial artificial chromosome (BAC) probes. Results obtained on 29 sSMC cases and five larger derivative chromosomes are presented and discussed. To confirm the reliability of PCL-FISH, eight of the 29 sSMC cases were studied by array-comparative genomic hybridization (aCGH); the used sSMC-specific DNA was obtained by glass-needle based microdissection and DOP-PCR-amplification. Overall, PCL-FISH leads to a better resolution than most FISH-banding approaches and is a good tool to narrow down chromosomal breakpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号