首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Satellite cells are tissue-specific stem cells responsible for skeletal muscle growth and regeneration. Although satellite cells were identified almost 50 years ago, the identity of progenitor populations from which they derive remains controversial. We developed MyoDiCre knockin mice, and used Cre/lox lineage analysis to determine whether satellite cell progenitors express MyoD, a marker of myogenic commitment. Recombination status of satellite cells was determined by confocal microscopy of isolated muscle fibers and by electron microscopic observation of muscle tissue fixed immediately following isolation, using R26R-EYFP and R26R (β-gal) reporter mice, respectively. We show that essentially all adult satellite cells associated with limb and body wall musculature, as well as the diaphragm and extraocular muscles, originate from MyoD+ progenitors. Neonatal satellite cells were Cre-recombined, but only a small minority exhibited ongoing Cre expression, indicating that most satellite cells had expressed MyoD prenatally. We also show that satellite cell development in MyoD-null mice is not due to functional compensation by MyoD non-expressing lineages. The results suggest that satellite cells are derived from committed myogenic progenitors, irrespective of the anatomical location, embryological origin, or physiological properties of associated musculature.  相似文献   

4.
5.
In some pathological conditions such as Duchenne muscular dystrophy, it has been known that a fatty infiltration in skeletal muscle is often observed and that is also one of primary factors to induce marked decline of muscular strength. However, the mechanism of fatty infiltration, cellular origin of accumulated adipocytes and its significance are not fully understood. The fact that persistent degenerative muscle fibers are present on dystrophic muscle leads us to hypothesize that muscle fiber condition affects fatty infiltration in skeletal muscle. We employed a single fiber culture system to determine whether fiber condition affects an appearance of adipocytes on the fibers. Artificially hyper-contracted muscle fibers (HCF), generated from isolated intact fibers (IF) of rat extensor digitrum longus muscle, were maintained as non-adherent cultures for 5–7 days. Interestingly, there appeared to be considerable numbers of mature adipocytes on HCF, whereas no adipocytes were seen on IF, indicating that cells on HCF spontaneously differentiated into mature adipocytes. Activation of RhoA signaling by the addition of thrombin decreased the number of adipocytes on HCF in a dose-dependent manner, whereas the number of MyoD-positive myoblasts increased. In contrast, Y-27632, a specific inhibitor of Rho kinases (ROCK), induced adipogenic differentiation of cells derived from IF. In addition, administration of Y-27632 into mouse regenerating muscle resulted in fat accumulation in the muscle. Taken together, the present studies clearly demonstrated that muscle fiber condition affects fat accumulation in skeletal muscle and that is possibly mediated by the RhoA signaling pathway.  相似文献   

6.
7.
The thymus is the central immune organ, but it is known to progressively degenerate with age. As thymus degeneration is paralleled by the wasting of aging skeletal muscle, we speculated that the thymus may play a role in muscle wasting. Here, using thymectomized mice, we show that the thymus is necessary for skeletal muscle regeneration, a process tightly associated with muscle aging. Compared to control mice, the thymectomized mice displayed comparable growth of muscle mass, but decreased muscle regeneration in response to injury, as evidenced by small and sparse regenerative myofibers along with inhibited expression of regeneration-associated genes myh3, myod, and myogenin. Using paired box 7 (Pax7)-immunofluorescence staining and 5-Bromo-2′-deoxyuridine-incorporation assay, we determined that the decreased regeneration capacity was caused by a limited satellite cell pool. Interestingly, the conditioned culture medium of isolated thymocytes had a potent capacity to directly stimulate satellite cell expansion in vitro. These expanded cells were enriched in subpopulations of quiescent satellite cells (Pax7highMyoDlowEdUpos) and activated satellite cells (Pax7highMyoDhighEdUpos), which were efficiently incorporated into the regenerative myofibers. We thus propose that the thymus plays an essential role in muscle regeneration by directly promoting satellite cell expansion and may function profoundly in the muscle aging process.  相似文献   

8.
Major problems in stem cell biology revolve around defining the developmental potential of cell populations and understanding how their potential is maintained or progressively restricted. Oxygen (O(2)) is an obvious environmental factor which has received little attention in culturing skeletal muscle progenitor cells. In this work, we examine the effects of O(2) levels on the developmental potential, proliferative capacity, and phenotype of the adult skeletal muscle fiber progenitor population (satellite cells), and cell lines that model multipotential embryonic paraxial mesoderm from which skeletal muscle develops. Both satellite cell proliferation and survival of mature fibers increased in physiologic (6%) O(2) vs. non-physiologic 20% O(2) used in virtually all traditional cell culture. Six percent O(2) conditions also accelerated the up-regulation of multiple MyoD family myogenic regulatory factors (MRFs). An unexpected finding was that fiber-adherent satellite cells could assume a non-myogenic phenotype. By the criteria of molecular markers and gross lipid accumulation, satellite cells were found to assume an adipocyte phenotype, and did so more prominently in 20% O(2) than in physiologic O(2). Selection of the adipogenic fate and execution of adipogenesis by multipotential mesenchymal cell lines was also dramatically higher in traditional 20 vs. 6% O(2), and decreased adipogenesis in physiologic O(2) was associated with significantly less expression of the adipogenic regulator, PPAR gamma. These results suggest that regulatory pathways affected by O(2) are important for satellite cell proliferation, execution of cell fate, and parent muscle survival in culture, and so may play a role in vivo under normal or pathologic conditions.  相似文献   

9.
Human skeletal muscle is an essential source of various cellular progenitors with potential therapeutic perspectives. We first used extracellular markers to identify in situ the main cell types located in a satellite position or in the endomysium of the skeletal muscle. Immunohistology revealed labeling of cells by markers of mesenchymal (CD13, CD29, CD44, CD47, CD49, CD62, CD73, CD90, CD105, CD146, and CD15 in this study), myogenic (CD56), angiogenic (CD31, CD34, CD106, CD146), hematopoietic (CD10, CD15, CD34) lineages. We then analysed cell phenotypes and fates in short- and long-term cultures of dissociated muscle biopsies in a proliferation medium favouring the expansion of myogenic cells. While CD56+ cells grew rapidly, a population of CD15+ cells emerged, partly from CD56+ cells, and became individualized. Both populations expressed mesenchymal markers similar to that harboured by human bone marrow-derived mesenchymal stem cells. In differentiation media, both CD56+ and CD15+ cells shared osteogenic and chondrogenic abilities, while CD56+ cells presented a myogenic capacity and CD15+ cells presented an adipogenic capacity. An important proportion of cells expressed the CD34 antigen in situ and immediately after muscle dissociation. However, CD34 antigen did not persist in culture and this initial population gave rise to adipogenic cells. These results underline the diversity of human muscle cells, and the shared or restricted commitment abilities of the main lineages under defined conditions.  相似文献   

10.
11.
We identify here the multiple epidermal growth factor repeat transmembrane protein Megf10 as a quiescent satellite cell marker that is also expressed in skeletal myoblasts but not in differentiated myofibers. Retroviral expression of Megf10 in myoblasts results in enhanced proliferation and inhibited differentiation. Infected myoblasts that fail to differentiate undergo cell cycle arrest and can reenter the cell cycle upon serum restimulation. Moreover, experimental modulations of Megf10 alter the expression levels of Pax7 and the myogenic regulatory factors. In contrast, Megf10 silencing in activated satellite cells on individual fibers or in cultured myoblasts results in a dramatic reduction in the cell number, caused by myogenin activation and precocious differentiation as well as a depletion of the self-renewing Pax7+/MyoD population. Additionally, Megf10 silencing in MyoD/ myoblasts results in down-regulation of Notch signaling components. We conclude that Megf10 represents a novel transmembrane protein that impinges on Notch signaling to regulate the satellite cell population balance between proliferation and differentiation.  相似文献   

12.
Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr−/−xLcat−/− or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr−/−xLcat+/+ single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr+/+xLcat−/− (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis.  相似文献   

13.
The effects of the inhibitor of DNA methylation 5-azacytidine on stem (satellite) cells isolated from fetal and definitive skeletal muscles of rats lead to the expression of marker genes of cardiomyogenesis (Gata4, Nkx2.5, connexin-43, n-cadherin, as well as Cacna 1 c encoding the cardiac subunit of the L-type Ca2+-channel). Through comparative analysis of the dynamics of expression of key markers of cardiomyogenesis, it was established that satellite cells isolated from fetal muscles have a more expressive potency to cardiomyocyte differentiation in vitro (expression of specific marker genes) compared to cells from muscles of adult animals. In the process of induced cardiomyocyte differentiation, the expression of MyoD and m-cadherin marker genes of skeletal muscle differentiation was not detected, suggesting that in the experiments presented the program of myogenic differentiation of skeletal muscles is inhibited.  相似文献   

14.
15.
The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.  相似文献   

16.
Mechanisms responsible for excellent marbling in Japanese black cattle, Wagyu, remain to be established. Because both muscle cells and intramuscular adipocytes are developed from mesenchymal progenitor cells during early muscle development, we hypothesized that intramuscular progenitor cells in Wagyu cattle have attenuated myogenic capacity in favor of adipogenesis, leading to high marbling but reduced muscle growth. Biceps femoris muscle biopsy samples were obtained from both Angus (n=3) and Wagyu (n=3) cattle at 12 months of age. Compared with Angus, the density of satellite cells was much lower in Wagyu muscle (by 45.8±10%, P<0.05). Consistently, the formation of myotubes from muscle-derived progenitor cells was also lower (by 64.2±12.9%, P<0.05), but adipogenic capacity was greater in Wagyu. The average muscle fiber diameter was larger in Wagyu (by 23.9±6.8%, P=0.089) despite less muscle mass, suggesting less muscle fiber formation in Wagyu compared with Angus cattle. Because satellite cells are derived from fetal myogenic cells, the reduction in satellite cell density together with lower muscle fiber formation suggests that myogenesis was attenuated during early muscle development in Wagyu cattle. Given the shared pool of mesenchymal progenitor cells, the attenuated myogenesis likely shifts progenitor cells to adipogenesis during early development, which may contribute to high intramuscular adipocyte formation in Wagyu cattle.  相似文献   

17.
Craniofacial and trunk skeletal muscles are evolutionarily distinct and derive from cranial and somitic mesoderm, respectively. Different regulatory hierarchies act upstream of myogenic regulatory factors in cranial and somitic mesoderm, but the same core regulatory network – MyoD, Myf5 and Mrf4 – executes the myogenic differentiation program. Notch signaling controls self-renewal of myogenic progenitors as well as satellite cell homing during formation of trunk muscle, but its role in craniofacial muscles has been little investigated. We show here that the pool of myogenic progenitor cells in craniofacial muscle of Dll1LacZ/Ki mutant mice is depleted in early fetal development, which is accompanied by a major deficit in muscle growth. At the expense of progenitor cells, supernumerary differentiating myoblasts appear transiently and these express MyoD. The progenitor pool in craniofacial muscle of Dll1LacZ/Ki mutants is largely rescued by an additional mutation of MyoD. We conclude from this that Notch exerts its decisive role in craniofacial myogenesis by repression of MyoD. This function is similar to the one previously observed in trunk myogenesis, and is thus conserved in cranial and trunk muscle. However, in cranial mesoderm-derived progenitors, Notch signaling is not required for Pax7 expression and impinges little on the homing of satellite cells. Thus, Dll1 functions in satellite cell homing and Pax7 expression diverge in cranial- and somite-derived muscle.  相似文献   

18.
The satellite cell is responsible for growth and repair of postnatal skeletal muscle. We investigated the expression of the myogenic regulatory gene (MRG) family in these cells in the stages from quiescence to fusion. Using polymerase chain reaction amplification of reverse-transcribed RNA (RT-PCR) isolated from adult rat satellite cells, we demonstrated a temporal sequence of gene activation, which is distinct from that previously observed in embryonic somitic cells. No MRG expression was detected in predominantly quiescent cells. MyoD is activated by 12 h in cell culture, prior to the first evidence of proliferation. MRF4 and myf-5 appear by 48 h and may be associated with the first division cycle. Myogenin is not detectable until 72 h after satellite cell recovery from the muscle fiber, coincidental with the first evidence of differentiation. © 1994 wiley-Liss, Inc.  相似文献   

19.
Abstract

Skeletal muscle satellite cells, a postulated multipotential stem cell population, play an essential role in the postnatal replenishment of skeletal muscles. In the present research, the skeletal muscle satellite cells were isolated from the pectorals of 15-day-old Beijing Fatty Chicken embryos using combined enzymatic digestion of 0.1% collagenase 1 and 0.25% trypsin. Myogenic markers such as MyoD, Pax7 and demin were detected, indicating their skeletal muscle satellite cell identity. Karyotype analysis showed that these in vitro cultured cells were genetically stable. Being exposed to bone morphogen and adipogenic factors, it was proved that they differentiated into osteocytes and adipocytes correspondingly.  相似文献   

20.
One of the goals in developmental biology is the identification of key regulatory genes that govern the transition of embryonic cells from a pluripotent potential to a specific, committed cell fate. During vertebrate skeletal myogenesis, this transition is regulated by the MyoD family of genes. C. elegans has muscle analogous to vertebrate skeletal muscle and has a gene(hlh-1) related to the MyoD family. The molecular and genetic characterization of hlh-1 shows that it is very similar to the vertebrate MyoD family in many respects, including its expression pattern and DNA binding activity. The hlh-1 product is required for proper myogenesis, but it is not required for myogenic commitment during embryogenesis in the nematode. The role of this MyoD-related gene in nematode myogenesis is discussed and compared to those of the vertebrate MyoD family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号