首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary hepatocyte culture is a valuable tool that has been extensively used in basic research of liver function, disease, pathophysiology, pharmacology and other related subjects. The method based on two-step collagenase perfusion for isolation of intact hepatocytes was first introduced by Berry and Friend in 1969 1 and, since then, has undergone many modifications. The most commonly used technique was described by Seglenin 1976 2. Essentially, hepatocytes are dissociated from anesthetized adult rats by a non-recirculating collagenase perfusion through the portal vein. The isolated cells are then filtered through a 100 μm pore size mesh nylon filter, and cultured onto plates. After 4-hour culture, the medium is replaced with serum-containing or serum-free medium, e.g. HepatoZYME-SFM, for additional time to culture. These procedures require surgical and sterile culture steps that can be better demonstrated by video than by text. Here, we document the detailed steps for these procedures by both video and written protocol, which allow consistently in the generation of viable hepatocytes in large numbers.  相似文献   

2.
Epithelial cells polarize their plasma membrane into biochemically and functionally distinct apical and basolateral domains where the apical domain faces the ''free'' surfaces and the basolateral membrane is in contact with the substrate and neighboring cells. Both membrane domains are separated by tight junctions, which form a diffusion barrier. Apical-basolateral polarization can be recapitulated successfully in culture when epithelial cells such as Madin-Darby Canine Kidney (MDCK) cells are seeded at high density on polycarbonate filters and cultured for several days 1 2. Establishment and maintenance of cell polarity is regulated by an array of small GTPases of the Ras superfamily such as RalA, Cdc42, Rab8, Rab10 and Rab13 3 4 5 6 7. Like all GTPases these proteins cycle between an inactive GDP-bound state and an active GTP-bound state. Specific mutations in the nucleotide binding regions interfere with this cycling 8. For example, Rab13T22N is permanently locked in the GDP-form and thus dubbed ''dominant negative'', whereas Rab13Q67L can no longer hydrolyze GTP and is thus locked in a ''dominant active'' state 7. To analyze their function in cells both dominant negative and dominant active alleles of GTPases are typically expressed at high levels to interfere with the function of the endogenous proteins 9. An elegant way to achieve high levels of overexpression in a short amount of time is to introduce the plasmids encoding the relevant proteins directly into the nuclei of polarized cells grown on filter supports using microinjection technique. This is often combined with the co-injection of reporter plasmids that encode plasma membrane receptors that are specifically sorted to the apical or basolateral domain. A cargo frequently used to analyze cargo sorting to the basolateral domain is a temperature sensitive allele of the vesicular stomatitis virus glycoprotein (VSVGts045) 10. This protein cannot fold properly at 39°C and will thus be retained in the endoplasmic reticulum (ER) while the regulatory protein of interest is assembled in the cytosol. A shift to 31°C will then allow VSVGts045 to fold properly, leave the ER and travel to the plasma membrane 11. This chase is typically performed in the presence of cycloheximide to prevent further protein synthesis leading to cleaner results. Here we describe in detail the procedure of microinjecting plasmids into polarized cells and subsequent incubations including temperature shifts that allow a comprehensive analysis of regulatory proteins involved in basolateral sorting.  相似文献   

3.
目的:探索采用无血清培养基原代培养成人宫颈上皮细胞的方法。方法:以成人的宫颈上皮组织为研究对象,采用胰蛋白酶-EDTA消化法获得宫颈上皮细胞悬液,于上皮细胞专用无血清培养基中培养,采用免疫细胞化学法测定细胞中角蛋白及波形蛋白的表达,对细胞纯度进行鉴定。结果:原代培养10-15天细胞融合达60%,传代至4-6代,细胞出现生长衰退。早期细胞生长状态良好,细胞纯度在90%以上。结论:采用酶消化法及K-SFM无血清培养基培养可获得纯度高的成人宫颈上皮细胞。  相似文献   

4.
Human embryonic stem cells (hESCs) have an unlimited capacity for self-renewal, and the ability to differentiate into cells derived from all three embryonic germ layers (1). Directed differentiation of hESCs into specific cell types has generated much interest in the field of regenerative medicine (e.g., (2-5)), and methods for determining the in vivo fate of selected or manipulated hESCs are essential to this endeavor. We have adapted a highly efficient teratoma formation assay for this purpose. A small number of specifically selected hESCs is mixed with undifferentiated wild type hESCs and Phaseolus vulgaris lectin to form a cell pellet. This is grafted beneath the kidney capsule in an immunodeficient mouse. As few as 2.5 x 105 hESCs are needed to form a 16 cm3 teratoma within 8-12 weeks. The fate of the originally selected hESCs can then be determined by immunohistochemistry. This method provides a valuable tool for characterizing tissue-specific reagents for cell-based therapy.  相似文献   

5.
The piggyBac transposon system is naturally active, originally derived from the cabbage looper moth1,2. This non-viral system is plasmid based, most commonly utilizing two plasmids with one expressing the piggyBac transposase enzyme and a transposon plasmid harboring the gene(s) of interest between inverted repeat elements which are required for gene transfer activity. PiggyBac mediates gene transfer through a "cut and paste" mechanism whereby the transposase integrates the transposon segment into the genome of the target cell(s) of interest. PiggyBac has demonstrated efficient gene delivery activity in a wide variety of insect1,2, mammalian3-5, and human cells6 including primary human T cells7,8. Recently, a hyperactive piggyBac transposase was generated improving gene transfer efficiency9,10.Human T lymphocytes are of clinical interest for adoptive immunotherapy of cancer11. Of note, the first clinical trial involving transposon modification of human T cells using the Sleeping beauty transposon system has been approved12. We have previously evaluated the utility of piggyBac as a non-viral methodology for genetic modification of human T cells. We found piggyBac to be efficient in genetic modification of human T cells with a reporter gene and a non-immunogenic inducible suicide gene7. Analysis of genomic integration sites revealed a lack of preference for integration into or near known proto-oncogenes13. We used piggyBac to gene-modify cytotoxic T lymphocytes to carry a chimeric antigen receptor directed against the tumor antigen HER2, and found that gene-modified T cells mediated targeted killing of HER2-positive tumor cells in vitro and in vivo in an orthotopic mouse model14. We have also used piggyBac to generate human T cells resistant to rapamycin, which should be useful in cancer therapies where rapamycin is utilized15.Herein, we describe a method for using piggyBac to genetically modify primary human T cells. This includes isolation of peripheral blood mononuclear cells (PBMCs) from human blood followed by culture, gene modification, and activation of T cells. For the purpose of this report, T cells were modified with a reporter gene (eGFP) for analysis and quantification of gene expression by flow cytometry.PiggyBac can be used to modify human T cells with a variety of genes of interest. Although we have used piggyBac to direct T cells to tumor antigens14, we have also used piggyBac to add an inducible safety switch in order to eliminate gene modified cells if needed7. The large cargo capacity of piggyBac has also enabled gene transfer of a large rapamycin resistant mTOR molecule (15 kb)15. Therefore, we present a non-viral methodology for stable gene-modification of primary human T cells for a wide variety of purposes.  相似文献   

6.
This protocol permits rapid isolation (in less than 1 hr) of murine pancreatic acini, making it possible to maintain them in culture for more than one week. More than 20 x 106 acinar cells can be obtained from a single murine pancreas. This protocol offers the possibility to independently process as many as 10 pancreases in parallel. Because it preserves acinar architecture, this model is well suited for studying the physiology of the exocrine pancreas in vitro in contrast to cell lines established from pancreatic tumors, which display many genetic alterations resulting in partial or total loss of their acinar differentiation.  相似文献   

7.
8.
Historically, the limited availability of primary endothelial cells from patients with vascular disorders has hindered the study of the molecular mechanisms underlying endothelial dysfunction in these individuals. However, the recent identification of blood outgrowth endothelial cells (BOECs), generated from circulating endothelial progenitors in adult peripheral blood, may circumvent this limitation by offering an endothelial-like, primary cell surrogate for patient-derived endothelial cells. Beyond their value to understanding endothelial biology and disease modeling, BOECs have potential uses in endothelial cell transplantation therapies. They are also a suitable cellular substrate for the generation of induced pluripotent stem cells (iPSCs) via nuclear reprogramming, offering a number of advantages over other cell types. We describe a method for the reliable generation, culture and characterization of BOECs from adult peripheral blood for use in these and other applications. This approach (i) allows for the generation of patient-specific endothelial cells from a relatively small volume of adult peripheral blood and (ii) produces cells that are highly similar to primary endothelial cells in morphology, cell signaling and gene expression.  相似文献   

9.
Murine and human esophageal myofibroblasts are generated via enzymatic digestion. Neonate (8-12 day old) murine esophagus is harvested, minced, washed, and subjected to enzymatic digestion with collagenase and dispase for 25 min. Human esophageal resection specimens are stripped of muscularis propria and adventitia and the remaining mucosa is minced, and subjected to enzymatic digestion with collagenase and dispase for up to 6 hr. Cultured cells express α-SMA and vimentin and express desmin weakly or not at all. Culture conditions are not conducive to growth of epithelial, hematopoietic, or endothelial cells. Culture purity is further confirmed by flow cytometric evaluation of cell surface marker expression of potential contaminating hematopoietic and endothelial cells. The described technique is straightforward and results in consistent generation of non-hematopoieitc, non-endothelial stromal cells. Limitations of this technique are inherent to the use of primary cultures in molecular biology studies, i.e., the unavoidable variability encountered among cultures established across different mice or humans. Primary cultures however are a more representative reflection of the in vivo state compared to cell lines. These methods also provide investigators the ability to isolate and culture stromal cells from different clinical and experimental conditions, allowing comparisons between groups. Characterized esophageal stromal cells can also be used in functional studies investigating epithelial-stromal interactions in esophageal disorders.  相似文献   

10.
Herpes keratitis is one of the most severe pathologies associated with the herpes simplex virus-type 1 (HSV-1). Herpes keratitis is currently the leading cause of both cornea-derived and infection-associated blindness in the developed world. Typical presentation of herpes keratitis includes infection of the corneal epithelium and sometimes the deeper corneal stroma and endothelium, leading to such permanent corneal pathologies as scarring, thinning, and opacity 1.Corneal HSV-1 infection is traditionally studied in two types of experimental models. The in vitro model, in which cultured monolayers of corneal epithelial cells are infected in a Petri dish, offers simplicity, high level of replicability, fast experiments, and relatively low costs. On the other hand, the in vivo model, in which animals such as rabbits or mice are inoculated directly in the cornea, offers a highly sophisticated physiological system, but has higher costs, longer experiments, necessary animal care, and a greater degree of variability. In this video article, we provide a detailed demonstration of a new ex vivo model of corneal epithelial HSV-1 infection, which combines the strengths of both the in vitro and the in vivo models. The ex vivo model utilizes intact corneas organotypically maintained in culture and infected with HSV-1. The use of the ex vivo model allows for highly physiologically-based conclusions, yet it is rather inexpensive and requires time commitment comparable to that of the in vitro model.  相似文献   

11.
Genital tract infections with Chlamydia trachomatis (C. trachomatis) are the most frequent transmitted sexually disease in women worldwide. Inefficient clearance or persistence of the pathogens may lead to ascending infections of the upper genital tract and are supposed to cause chronic inflammatory damage to infected tissues 1,2. As a consequence, severe clinical sequelae like pelvic inflammatory disease (PID), tubal occlusion and infertility may occur 3,4. Most of the research with C. trachomatis has been conducted in epithelial cell lines (e.g. HEp-2 cells and HeLa-229) or in mice. However, as with cell- culture based models, they do neither reflect the physiology of native tissue nor the pathophysiology of C. trachomatis genital tract infections in vivo 5. Further limitations are given by the fact that central signaling cascades (e.g. IFN-γ mediated JAK/STAT signaling pathway) that control intracellular chlamydial growth fundamentally differ between mice and humans 6,7. We and others therefore established a whole organ fallopian tube model to investigate direct interactions between C. trachomatis and human fallopian tube cells ex vivo 8,9.For this purpose, human fallopian tubes from women undergoing hysterectomy were collected and infected with C. trachomatis serovar D. Within 24 h post infection, specimen where analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to detect Chlamydia trachomatis mediated epithelial damage as well as C. trachomatis inclusion formation in the fallopian tissue.  相似文献   

12.
The chicken embryo is a classical animal model for studying normal embryonic and fetal development and for xenotransplantation experiments to study the behavior of cells in a standardized in vivo environment. The main advantages of the chicken embryo include low cost, high accessibility, ease of surgical manipulation and lack of a fully developed immune system. Xenotransplantation into chicken embryos can provide valuable information about cell proliferation, differentiation and behavior, the responses of cells to signals in defined embryonic tissue niches, and tumorigenic potential. Transplanting cells into chicken embryos can also be a step towards transplantation experiments in other animal models. Recently the chicken embryo has been used to evaluate the neurogenic potential of human stem and progenitor cells following implantation into neural anlage1-6. In this video we document the entire procedure for transplanting human stem cells into the developing central nervous system of the chicken embryo. The procedure starts with incubation of fertilized eggs until embryos of the desired age have developed. The eggshell is then opened, and the embryo contrasted by injecting dye between the embryo and the yolk. Small lesions are made in the neural tube using microsurgery, creating a regenerative site for cell deposition that promotes subsequent integration into the host tissue. We demonstrate injections of human stem cells into such lesions made in the part of the neural tube that forms the hindbrain and the spinal cord, and into the lumen of the part of the neural tube that forms the brain. Systemic injections into extraembryonic veins and arteries are also demonstrated as an alternative way to deliver cells to vascularized tissues including the central nervous system. Finally we show how to remove the embryo from the egg after several days of further development and how to dissect the spinal cord free for subsequent physiological, histological or biochemical analyses.  相似文献   

13.
The apical and basolateral surfaces of airway epithelial cells demonstrate directional responses to pathogen exposure in vivo. Thus, ideal in vitro models for examining cellular responses to respiratory pathogens polarize, forming apical and basolateral surfaces. One such model is differentiated normal human bronchial epithelial cells (NHBE). However, this system requires lung tissue samples, expertise isolating and culturing epithelial cells from tissue, and time to generate an air-liquid interface culture.Calu-3 cells, derived from a human bronchial adenocarcinoma, are an alternative model for examining the response of proximal airway epithelial cells to respiratory insult1, pharmacological compounds2-6, and bacterial7-9 and viral pathogens, including influenza virus, rhinovirus and severe acute respiratory syndrome - associated coronavirus10-14. Recently, we demonstrated that Calu-3 cells are susceptible to respiratory syncytial virus (RSV) infection in a manner consistent with NHBE15,16 . Here, we detail the establishment of a polarized, liquid-covered culture (LCC) of Calu-3 cells, focusing on the technical details of growing and culturing Calu-3 cells, maintaining cells that have been cultured into LCC, and we present the method for performing respiratory virus infection of polarized Calu-3 cells.To consistently obtain polarized Calu-3 LCC, Calu-3 cells must be carefully subcultured before culturing in Transwell inserts. Calu-3 monolayer cultures should remain below 90% confluence, should be subcultured fewer than 10 times from frozen stock, and should regularly be supplied with fresh medium. Once cultured in Transwells, Calu-3 LCC must be handled with care. Irregular media changes and mechanical or physical disruption of the cell layers or plates negatively impact polarization for several hours or days. Polarization is monitored by evaluating trans-epithelial electrical resistance (TEER) and is verified by evaluating the passive equilibration of sodium fluorescein between the apical and basolateral compartments17,18 . Once TEER plateaus at or above 1,000 Ω×cm2, Calu-3 LCC are ready to use to examine cellular responses to respiratory pathogens.  相似文献   

14.
We established an endodermal epithelial cell culture model (EEC) for studying the function of certain enzymes and proteins in mediating nutrient utilization by avian embryos during development. Fertilized Japanese quail eggs were incubated at 37 °C for 5 days and then yolk sac membranes (YSM) were collected to establish the EEC culture system. We isolated the embryonic endoderm layer from YSM, and sliced the membrane into 2 - 3 mm pieces and partially digested with collagenase before seeding in 24-well culture plates. The EECs proliferate out of the tissue and are ready for cell culture studies. We found that the EECs had typical characteristics of YSM in vivo, for example, accumulation of lipid droplets, expression of sterol O-acyltransferase and lipoprotein lipase. The partial digestion treatment significantly increased the successful rate of EEC culture. Utilizing the EECs, we demonstrated that the expression of SOAT1 was regulated by the cAMP dependent protein kinase A related pathway. This primary Japanese quail EEC culture system is a useful tool to study embryonic lipid transportation and to clarify the role of genes involved in mediating nutrient utilization in YSM during avian embryonic development.  相似文献   

15.
Time-lapse imaging can be used to compare behavior of cultured primary preneoplastic mammary epithelial cells derived from different genetically engineered mouse models of breast cancer. For example, time between cell divisions (cell lifetimes), apoptotic cell numbers, evolution of morphological changes, and mechanism of colony formation can be quantified and compared in cells carrying specific genetic lesions. Primary mammary epithelial cell cultures are generated from mammary glands without palpable tumor. Glands are carefully resected with clear separation from adjacent muscle, lymph nodes are removed, and single-cell suspensions of enriched mammary epithelial cells are generated by mincing mammary tissue followed by enzymatic dissociation and filtration. Single-cell suspensions are plated and placed directly under a microscope within an incubator chamber for live-cell imaging. Sixteen 650 μm x 700 μm fields in a 4x4 configuration from each well of a 6-well plate are imaged every 15 min for 5 days. Time-lapse images are examined directly to measure cellular behaviors that can include mechanism and frequency of cell colony formation within the first 24 hr of plating the cells (aggregation versus cell proliferation), incidence of apoptosis, and phasing of morphological changes. Single-cell tracking is used to generate cell fate maps for measurement of individual cell lifetimes and investigation of cell division patterns. Quantitative data are statistically analyzed to assess for significant differences in behavior correlated with specific genetic lesions.  相似文献   

16.
Pancreatic acinar cells produce and secrete digestive enzymes. These cells are organized as a cluster which forms and shares a joint lumen. This work demonstrates how the secretory capacity of these cells can be assessed by culture of isolated acini. The setup is advantageous since isolated acini, which retain many characteristics of the intact exocrine pancreas can be manipulated and monitored more readily than in the whole animal. Proper isolation of pancreatic acini is a key requirement so that the ex vivo culture will represent the in vivo nature of the acini. The protocol demonstrates how to isolate intact acini from the mouse pancreas. Subsequently, two complementary methods for evaluating pancreatic secretion are presented. The amylase secretion assay serves as a global measure, while direct imaging of pancreatic secretion allows the characterization of secretion at a sub-cellular resolution. Collectively, the techniques presented here enable a broad spectrum of experiments to study exocrine secretion.  相似文献   

17.
Human amnion epithelial cells (hAECs) derived from term or pre-term amnion membranes have attracted attention from researchers and clinicians as a potential source of cells for regenerative medicine. The reason for this interest is evidence that these cells have highly multipotent differentiation ability, low immunogenicity, and anti-inflammatory functions. These properties have prompted researchers to investigate the potential of hAECs to be used to treat a variety of diseases and disorders in pre-clinical animal studies with much success.hAECs have found widespread application for the treatment of a range of diseases and disorders. Potential clinical applications of hAECs include the treatment of stroke, multiple sclerosis, liver disease, diabetes and chronic and acute lung diseases. Progressing from pre-clinical animal studies into clinical trials requires a higher standard of quality control and safety for cell therapy products. For safety and quality control considerations, it is preferred that cell isolation protocols use animal product-free reagents. We have developed protocols to allow researchers to isolate, cryopreserve and culture hAECs using animal product-free reagents. The advantage of this method is that these cells can be isolated, characterized, cryopreserved and cultured without the risk of delivering potentially harmful animal pathogens to humans, while maintaining suitable cell yields, viabilities and growth potential. For researchers moving from pre-clinical animal studies to clinical trials, these methodologies will greatly accelerate regulatory approval, decrease risks and improve the quality of their therapeutic cell population.  相似文献   

18.
The physiological electric field serves specific biological functions, such as directing cell migration in embryo development, neuronal outgrowth and epithelial wound healing. Applying a direct current electric field to cultured cells in vitro induces directional cell migration, or galvanotaxis. The 2-dimensional galvanotaxis method we demonstrate here is modified with custom-made poly(vinyl chloride) (PVC) chambers, glass surface, platinum electrodes and the use of a motorized stage on which the cells are imaged. The PVC chambers and platinum electrodes exhibit low cytotoxicity and are affordable and re-useable. The glass surface and the motorized microscope stage improve quality of images and allow possible modifications to the glass surface and treatments to the cells. We filmed the galvanotaxis of two non-tumorigenic, SV40-immortalized prostate cell lines, pRNS-1-1 and PNT2. These two cell lines show similar migration speeds and both migrate toward the cathode, but they do show a different degree of directionality in galvanotaxis. The results obtained via this protocol suggest that the pRNS-1-1 and the PNT2 cell lines may have different intrinsic features that govern their directional migratory responses.  相似文献   

19.
Experimental examination of normal human mammary epithelial cell (HMEC) behavior, and how normal cells acquire abnormal properties, can be facilitated by in vitro culture systems that more accurately model in vivo biology. The use of human derived material for studying cellular differentiation, aging, senescence, and immortalization is particularly advantageous given the many significant molecular differences in these properties between human and commonly utilized rodent cells1-2. Mammary cells present a convenient model system because large quantities of normal and abnormal tissues are available due to the frequency of reduction mammoplasty and mastectomy surgeries.The mammary gland consists of a complex admixture of many distinct cell types, e.g., epithelial, adipose, mesenchymal, endothelial. The epithelial cells are responsible for the differentiated mammary function of lactation, and are also the origin of the vast majority of human breast cancers. We have developed methods to process mammary gland surgical discard tissues into pure epithelial components as well as mesenchymal cells3. The processed material can be stored frozen indefinitely, or initiated into primary culture. Surgical discard material is transported to the laboratory and manually dissected to enrich for epithelial containing tissue. Subsequent digestion of the dissected tissue using collagenase and hyaluronidase strips stromal material from the epithelia at the basement membrane. The resulting small pieces of the epithelial tree (organoids) can be separated from the digested stroma by sequential filtration on membranes of fixed pore size. Depending upon pore size, fractions can be obtained consisting of larger ductal/alveolar pieces, smaller alveolar clusters, or stromal cells. We have observed superior growth when cultures are initiated as organoids rather than as dissociated single cells. Placement of organoids in culture using low-stress inducing media supports long-term growth of normal HMEC with markers of multiple lineage types (myoepithelial, luminal, progenitor)4-5. Sufficient numbers of cells can be obtained from one individual''s tissue to allow extensive experimental examination using standardized cell batches, as well as interrogation using high throughput modalities.Cultured HMEC have been employed in a wide variety of studies examining the normal processes governing growth, differentiation, aging, and senescence, and how these normal processes are altered during immortal and malignant transformation4-15,16. The effects of growth in the presence of extracellular matrix material, other cell types, and/or 3D culture can be compared with growth on plastic5,15. Cultured HMEC, starting with normal cells, provide an experimentally tractable system to examine factors that may propel or prevent human aging and carcinogenesis.  相似文献   

20.
Tissues and cell lines derived from an individual with disease are ideal sources to study disease-related cellular phenotypes. Patient-derived fibroblasts in this protocol have been successfully used in the derivation of induced pluripotent stem cells to model disease1. Early passages of these fibroblasts can also be used for cell-based functional assays to study specific disease pathways, mechanisms2 and subsequent drug screening approaches. The advantage of the presented protocol over enzymatic procedures are 1) the reproducibility of the technique from small amounts of tissue derived from older patients, e.g. patients affected with Parkinson''s disease, 2) the technically simple approach over more challenging methodologies using enzymatic treatments, and 3) the time consideration: this protocol takes 15-20 min and can be performed immediately after biopsy arrival. Enzymatic treatments can take up to 4 hr and have the problems of overdigestion, reduction of cell viability and subsequent attachment of cells when not handled properly. This protocol describes the dissection and preparation of a 4-mm human skin biopsy for derivation of a fibroblast culture and has a very high success rate which is important when dealing with patient-derived tissue samples. In this culture, keratinocytes migrate out of the biopsy tissue within the first week after preparation. Fibroblasts appear 7-10 days after the first outgrowth of keratinocytes. DMEM high glucose media supplemented with 20% FBS favors the growth of fibroblasts over keratinocytes and fibroblasts will overgrow the keratinocytes. After 2 passages keratinocytes have been diluted out resulting in relatively homogenous fibroblast cultures which expresses the fibroblast marker SERPINH1 (HSP-47). Using this approach, 15-20 million fibroblasts can be derived in 4-8 weeks for cell banking. The skin dissection takes about 15-20 min, cells are then monitored once a day under the microscope, and media is changed every 2-3 days after attachment and outgrowth of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号