共查询到20条相似文献,搜索用时 15 毫秒
1.
Félix Legendre Neal Cody Carole Iampietro Julie Bergalet Fabio Alexis Lefebvre Ga?l Moquin-Beaudry Olivia Zhang Xiaofeng Wang Eric Lécuyer 《Journal of visualized experiments : JoVE》2013,(71)
Assessing the expression pattern of a gene, as well as the subcellular localization properties of its transcribed RNA, are key features for understanding its biological function during development. RNA in situ hybridization (RNA-ISH) is a powerful method used for visualizing RNA distribution properties, be it at the organismal, cellular or subcellular levels 1. RNA-ISH is based on the hybridization of a labeled nucleic acid probe (e.g. antisense RNA, oligonucleotides) complementary to the sequence of an mRNA or a non-coding RNA target of interest 2. As the procedure requires primary sequence information alone to generate sequence-specific probes, it can be universally applied to a broad range of organisms and tissue specimens 3. Indeed, a number of large-scale ISH studies have been implemented to document gene expression and RNA localization dynamics in various model organisms, which has led to the establishment of important community resources 4-11. While a variety of probe labeling and detection strategies have been developed over the years, the combined usage of fluorescently-labeled detection reagents and enzymatic signal amplification steps offer significant enhancements in the sensitivity and resolution of the procedure 12. Here, we describe an optimized fluorescent in situ hybridization method (FISH) employing tyramide signal amplification (TSA) to visualize RNA expression and localization dynamics in staged Drosophila embryos. The procedure is carried out in 96-well PCR plate format, which greatly facilitates the simultaneous processing of large numbers of samples. 相似文献
2.
3.
5.
6.
Identification of fungi in dermatological samples using PCR is reliable and provides significantly improved results in comparison with cultures. It is possible to identify the infectious agent when negative results are obtained from cultures. In addition, identification of the infectious agent can be obtained in 1 day. Conventional and real-time PCR methods used for direct fungus identification in collected samples vary by DNA extraction methods, targeted DNA and primers, and the way of analysing the PCR products. The choice of a unique method in a laboratory is complicated because the results expected from skin and hair sample analysis are different from those expected in cases of onychomycosis. In skin and hair samples, one dermatophyte among about a dozen possible species has to be identified. In onychomycosis, the infectious agents are mainly Trichophyton rubrum and, to a lesser extent, Trichophyton interdigitale, but also moulds insensitive to oral treatments used for dermatophytes, which renders fungal identification mandatory. The benefits obtained with the use of PCR methods for routine analysis of dermatological samples have to be put in balance with the relative importance of getting a result in a short time, the price of molecular biology reagents and equipment, and especially the time spent conducting laboratory manipulations. 相似文献
7.
8.
9.
Marianne Sommer 《Journal of the history of biology》2008,41(3):473-528
In the advertising discourse of human genetic database projects, of genetic ancestry tracing companies, and in popular books on anthropological genetics, what I refer to as the anthropological gene and genome appear as documents of human history, by far surpassing the written record and oral history in scope and accuracy as archives of our past. How did macromolecules become “documents of human evolutionary history”? Historically, molecular anthropology, a term introduced by Emile Zuckerkandl in 1962 to characterize the study of primate phylogeny and human evolution on the molecular level, asserted its claim to the privilege of interpretation regarding hominoid, hominid, and human phylogeny and evolution vis-à-vis other historical sciences such as evolutionary biology, physical anthropology, and paleoanthropology. This process will be discussed on the basis of three key conferences on primate classification and evolution that brought together exponents of the respective fields and that were held in approximately ten-years intervals between the early 1960s and the 1980s. I show how the anthropological gene and genome gained their status as the most fundamental, clean, and direct records of historical information, and how the prioritizing of these epistemic objects was part of a complex involving the objectivity of numbers, logic, and mathematics, the objectivity of machines and instruments, and the objectivity seen to reside in the epistemic objects themselves. 相似文献
10.
11.
12.
The Biology of Prostaglandins and Related Eicosanoids in Invertebrates: Cellular, Organismal and Ecological Actions 总被引:1,自引:1,他引:1
SYNOPSIS. Prostaglandins and related eicosanoids are oxygenatedmetabolites of C20 polyunsaturated fatty acids. These compoundshave been detected in species representing all major animalphyla. The significance of eicosanoids lies in two broad areasof animal biology. In one, eicosanoids are involved in regulationof many cellular events. In the other, eicosanoids facilitatecertain ecological interactions. Eicosanoids are known bestin the narrow context of their clinical signif-icance in humanmedicine. In this essay we suggest a new, broader paradigm forunderstanding the meaning of eicosanoids. Under this paradigm,called the biological paradigm, we note eicosanoids were recruitedinto roles as biological signal moieties long before the originsof the Metazoa. During the ensuing evolutionary diversificationof animals, eicosanoids have been used in a vast diversity ofbiolog ical roles, some of which occur only in invertebrates.We think this diversity endows eicosanoids with unusual explanatorypower in apprehending biological phenomena. In this review,we recount the literature on eicosanoids in protozoans and procaryotes,then provide a detailed review of the roles of eicosanoids ininverte-brate immunity. We draw upon recent work in parasitoiogyto outline an ecological role of eicosanoids in host-parasiterelationships. It appears to us that eicosanoids exert profoundeffects at the cellular, organismal and ecological levels ofbiologicalorganization. We suggest that continued inquiry into the biologicalsignificance of eicosanoids will yield important new informationon invertebrates. 相似文献
13.
Quantitative rRNA-Targeted Solution-Based Hybridization Assay Using Peptide Nucleic Acid Molecular Beacons
下载免费PDF全文

The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries. 相似文献
14.
荧光原位杂交技术的研究进展 总被引:2,自引:0,他引:2
荧光原位杂交(FISH)是在染色体、间期细胞核和DNA纤维上进行DNA序列定位的一种有效手段。近年来,围绕提高检测的分辨率和灵敏性,不断将免疫染色、量子点和微流控芯片等物理化学技术引入到荧光原位杂交中,促进了它的快速发展。本文主要综述了荧光原位杂交的基本原理和发展历程,重点介绍了免疫染色-荧光原位杂交(immuno-FISH)、量子点-荧光原位杂交(QD-FISH)和微流控芯片-荧光原位杂交(FISH on microchip)等多种新技术及其检测特点,如快速、灵敏、动态、多样化等。随着荧光原位杂交技术的不断完善与发展,将在细胞遗传学、表观遗传学及分子生物学等领域发挥更加重要的作用。 相似文献
15.
16.
17.
采用荧光原位杂交技术,对分属5个科的10种植物的分生细胞的18S-25S rRNA基因(45S rDNA)的组织模式进行了比较分析.45S rDNA探针在所有供试植物的间期核都产生了两种杂交信号:荧光强、位于核仁周边的纽和荧光较弱分布于核仁内的点,表明不同植物间期核的rDNA染色质的组织模式相似.在每种植物的部分间期细胞都观察到点与纽相连或从纽发出的情况,而且点的数目越多纽就变得越小,点的有无和数目的多少与细胞的活性呈正相关.这些事实表明,纽代表了处于凝缩状态的非活性的rDNA染色质,点是由纽解凝缩而来,rDNA异染色质解凝缩形成点是植物rRNA基因活跃转录的细胞学表现,在同一物种中点的多少代表了间期核rDNA转录活性的强弱.我们的结果支持点是核仁内活性rRNA基因组织的结构单位及rRNA合成发生地点的推论.我们的结果还显示,不同植物间期核的rDNA染色质的组织也存在一些差异,其中核仁内点的最大数目有较大的不同.在所有供试植物的有丝分裂前中期细胞,45S rDNA探针在rDNA位点都产生了松散的信号块和许多点,表明植物的rDNA位点在有丝分裂前中期还有较活跃的转录. 相似文献
18.
19.
20.