首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Holmes silver impregnation method has made possible the recognition of multiple neuronal types and synapses in myelinating cultures of mouse cerebellum. Well stained large and medium-sized neurons are always found in small numbers near ependymal formations and are considered to be roof nuclear neurons. Neurons with poorly stained somas, abruptly demarked from intensely stained axons, are numerous and often are arranged in palisades. With prolonged maintenance in vitro these neurons develop some but not all of the features of mature Purkinje cells. A few small, densely stained, bipolar neurons, often with one process bifurcated, are found in dense regions of some cultures of newborn cerebellum. These neurons are commoner in cultures from cerebella of older mice. They closely resemble the immature granule cell in vivo. All the neuron types recognized in cultures are present in the initial explants; neurons differentiate further in vitro, but new neurons probably do not form. Synaptic boutons are found on somas and dendrites of many Purkinje cells. Two cultures contained structures resembling the basket endings which surround Purkinje cell somas in vivo. The complexity of neuronal relationships in cultures of central nervous tissue is emphasized.  相似文献   

2.
《遗传学报》2022,49(9):847-858
N6-methyladenosine (m6A) modification, which is achieved by the METTL3/METTL14/WTAP methyltransferase complex, is the most abundant internal mRNA modification. Although recent evidence indicates that m6A can regulate neurodevelopment as well as synaptic function, the roles of m6A modification in the cerebellum and related synaptic connections are not well established. Here, we report that Purkinje cell (PC)-specific WTAP knockout mice display early-onset ataxia concomitant with cerebellar atrophy due to extensive PC degeneration and apoptotic cell death. Loss of Wtap also causes the aberrant degradation of multiple PC synapses. WTAP depletion leads to decreased expression levels of METTL3/14 and reduced m6A methylation in PCs. Moreover, the expression of GFAP and NF-L in the degenerating cerebellum is increased, suggesting severe neuronal injuries. In conclusion, this study demonstrates the critical role of WTAP-mediated m6A modification in cerebellar PCs, thus providing unique insights related to neurodegenerative disorders.  相似文献   

3.
In ataxia-telangiectasia (A–T) the death of neurons is associated with the loss of neuronal cell cycle control. In most Atm−/− mouse models, however, these cell cycle anomalies are present but the phenotype of neuronal cell loss found in humans is not. Mouse Atm−/− neurons re-enter a cell cycle and replicate their DNA, but they do not die – even months after initiating the cycle. In the current study, we explore whether systemic inflammation or hypoxia-induced oxidative stress can serve as second stressors that can promote cell death in ATM-deficient neurons. We find that after either immune or hypoxic challenge, the levels of cell cycle proteins – PCNA, cyclin A and cyclin B – are significantly elevated in cerebellar Purkinje cells. Both the number of cells that express cell cycle proteins as well as the intensity of the expression levels in each cell is increased in the stressed animals. The cell cycle-positive neurons also increasingly express cell death markers such as activated caspase-3, γ-H2AX and TUNEL staining. Interestingly, nuclear HDAC4 localization is also enhanced in Atm−/− Purkinje neurons after the immune challenge suggesting that both genetic and epigenetic changes in Atm−/− mice respond to environmental challenges. Our findings support the hypothesis that multiple insults are needed to drive even genetically vulnerable neurons to die a cell cycle-related cell death and point to either inflammation or oxidative stressors as potential contributors to the A−T disease process.  相似文献   

4.
Vav3 is a guanosine diphosphate/guanosine triphosphate exchange factor for Rho/Rac GTPases that has been involved in functions related to the hematopoietic system, bone formation, cardiovascular regulation, angiogenesis, and axon guidance. We report here that Vav3 is expressed at high levels in Purkinje and granule cells, suggesting additional roles for this protein in the cerebellum. Consistent with this hypothesis, we demonstrate using Vav3-deficient mice that this protein contributes to Purkinje cell dendritogenesis, the survival of granule cells of the internal granular layer, the timely migration of granule cells of the external granular layer, and to the formation of the cerebellar intercrural fissure. With the exception of the latter defect, the dysfunctions found in Vav3−/− mice only occur at well-defined postnatal developmental stages and disappear, or become ameliorated, in older animals. Vav2-deficient mice do not show any of those defects. Using primary neuronal cultures, we show that Vav3 is important for dendrite branching, but not for primary dendritogenesis, in Purkinje and granule cells. Vav3 function in the cerebellum is functionally relevant, because Vav3−/− mice show marked motor coordination and gaiting deficiencies in the postnatal period. These results indicate that Vav3 function contributes to the timely developmental progression of the cerebellum.  相似文献   

5.
Ethanol exposure during development leads to alterations in neuronal differentiation and profound neuronal loss in multiple regions of the developing brain. Although differentiating Purkinje cells of the cerebellum are particularly vulnerable to ethanol exposure, the mechanisms that ameliorate ethanol-induced Purkinje cell loss have not been well defined. Previous research indicates that glial-derived neurotrophic factor (GDNF), a member of the transforming growth factor-β family, promotes the survival of several neuronal populations, including cerebellar Purkinje cells. Therefore, we examined whether GDNF could attenuate ethanol-induced Purkinje cell loss in an in vitro model system using calbindin-D28k-immunoreactivity as a specific marker for Purkinje cells. We found that ethanol led to a significant dose-related decline in calbindin-D28k-immunoreactive cells in explant cultures of the developing cerebellum. However, concurrent administration of GDNF led to a significant rescue of calbindin-D28k-immunoreactive cells. Therefore, our results suggest that GDNF prevents ethanol-associated Purkinje cell loss. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 835–847, 1997  相似文献   

6.
《Developmental neurobiology》2017,77(10):1175-1187
Cyclin‐dependent kinase 5 (Cdk5) is recognized as a unique member among other Cdks due to its versatile roles in many biochemical processes in the nervous system. The proper development of neuronal dendrites is required for the formation of complex neural networks providing the physiological basis of various neuronal functions. We previously reported that sparse dendrites were observed on cultured Cdk5‐null Purkinje cells and Purkinje cells in Wnt1cre‐mediated Cdk5 conditional knockout (KO) mice. In the present study, we generated L7cre‐mediated p35; p39 double KO (L7cre‐p35f/f; p39–/–) mice whose Cdk5 activity was eliminated specifically in Purkinje cells of the developing cerebellum. Consequently, these mice exhibited defective Purkinje cell migration, motor coordination deficiency and a Purkinje dendritic abnormality similar to what we have observed before, suggesting that dendritic growth of Purkinje cells was cell‐autonomous in vivo . We found that mixed and overlay cultures of WT cerebellar cells rescued the dendritic deficits in Cdk5‐null Purkinje cells, however, indicating that Purkinje cell dendritic development was also supported by non‐cell‐autonomous factors. We then again rescued these abnormalities in vitro by applying exogenous brain‐derived neurotrophic factor (BDNF). Based on the results from culture experiments, we attempted to rescue the developmental defects of Purkinje cells in L7cre‐p35f/f; p39–/– mice by using a TrkB agonist. We observed partial rescue of morphological defects of dendritic structures of Purkinje cells. These results suggest that Cdk5 activity is required for Purkinje cell dendritic growth in cell‐autonomous and non‐cell‐autonomous manners. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1175–1187, 2017  相似文献   

7.
Selenium exerts many, if not most, of its physiological functions as a selenocysteine moiety in proteins. Selenoproteins are involved in many biochemical processes including regulation of cellular redox state, calcium homeostasis, protein biosynthesis, and degradation. A neurodevelopmental syndrome called progressive cerebello-cortical atrophy (PCCA) is caused by mutations in the selenocysteine synthase gene, SEPSECS, demonstrating that selenoproteins are essential for human brain development. While we have shown that selenoproteins are required for correct hippocampal and cortical interneuron development, little is known about the functions of selenoproteins in the cerebellum. Therefore, we have abrogated neuronal selenoprotein biosynthesis by conditional deletion of the gene encoding selenocysteyl tRNA[Ser]Sec (gene symbol Trsp). Enzymatic activity of cellular glutathione peroxidase and cytosolic thioredoxin reductase is reduced in cerebellar extracts from Trsp-mutant mice. These mice grow slowly and fail to gain postural control or to coordinate their movements. Histological analysis reveals marked cerebellar hypoplasia, associated with Purkinje cell death and decreased granule cell proliferation. Purkinje cell death occurs along parasagittal stripes as observed in other models of Purkinje cell loss. Neuron-specific inactivation of glutathione peroxidase 4 (Gpx4) used the same Cre driver phenocopies tRNA[Ser]Sec mutants in several aspects: cerebellar hypoplasia, stripe-like Purkinje cell loss, and reduced granule cell proliferation. Parvalbumin-expressing GABAergic interneurons (stellate and/or basket cells) are virtually absent in tRNA[Ser]Sec-mutant mice, while some remained in Gpx4-mutant mice. Our data show that selenoproteins are specifically required in postmitotic neurons of the developing cerebellum, thus providing a rational explanation for cerebellar hypoplasia as occurring in PCCA patients.  相似文献   

8.
The distribution of GM1 ganglioside in developing mouse cerebellum was monitored by indirect immunofluorescent detection of choleragenoid receptors. In frozen sections of cerebellum from mice 5 to 10 days old, fluorescence is observed on granule cells in the inner rows of the external granular layer, in the growing molecular layer, the Purkinje cell layer, and the internal granular layer. In sections of adult mice, fluorescence is restricted to the bodies of Purkinje and internal granule neurons. The percentage of fluorescent dissociated or cultured cerebellar cells increases with the postnatal age of the mouse or the duration of time in vitro. No fluorescence is observed in the absence of choleragenoid or if the test material is extracted with chloroform:methanol. To determine whether the expression of surface GM1 ganglioside in culture is a reflection of a developmental program, mice are injected at particular times with [3H]thymidine and cerebellar cultures processed for simultaneous autoradiography and immunofluorescence. Granule cells from 8-day-old mice having cholera toxin receptors at 20 hr in vitro are a distinct population born 1 day or earlier prior to sacrifice. Cells synthesizing DNA on the day of sacrifice are not fluorescent at 20 hr in vitro. This observation correlates well with immunohistological results showing a lack of fluorescence in the outer proliferative rows of the external granular layer. Therefore GM1 ganglioside is not present on granule cell precursors but is expressed at some time after the cells become postmitotic. GM1 ganglioside is detected on growing parallel fibers in situ and neurites in vitro but not on adult axons, suggesting differential localization at a later stage of development.  相似文献   

9.
Nuclear receptors and their coregulators play a critical role in brain development by regulating the spatiotemporal expression of their target genes. The arginine-glutamic acid dipeptide repeats gene (Rere) encodes a nuclear receptor coregulator previously known as Atrophin 2. In the developing cerebellum, RERE is expressed in the molecular layer, the Purkinje cell layer and the granule cell layer but not in granule cell precursors. To study RERE''s role in cerebellar development, we used RERE-deficient embryos bearing a null allele (om) and a hypomorphic allele (eyes3) of Rere (Rere om/eyes3). In contrast to wild-type embryos, formation of the principal fissures in these RERE-deficient embryos was delayed and the proliferative activity of granule cell precursors (GCPs) was reduced at E18.5. This reduction in proliferation was accompanied by a decrease in the expression of sonic hedgehog (SHH), which is secreted from Purkinje cells and is required for normal GCP proliferation. The maturation and migration of Purkinje cells in Rere om/eyes3 embryos was also delayed with decreased numbers of post-migratory Purkinje cells in the cerebellum. During the postnatal period, RERE depletion caused incomplete division of lobules I/II and III due to truncated development of the precentral fissure in the cerebellar vermis, abnormal development of lobule crus I and lobule crus II in the cerebellar hemispheres due to attenuation of the intercrural fissure, and decreased levels of Purkinje cell dendritic branching. We conclude that RERE-deficiency leads to delayed development of the principal fissures and delayed maturation and migration of Purkinje cells during prenatal cerebellar development and abnormal cerebellar foliation and Purkinje cell maturation during postnatal cerebellar development.  相似文献   

10.
NeuroD is required for the survival of many subtypes of developing neurons in the vertebrate central nervous system. Because NeuroD-deficient neurons in the hippocampus, cerebellum, and inner ear die prematurely in the early stage of neurogenesis, the role of NeuroD during the later stages of neurogenesis of these cell subtypes is not well understood. In addition, the mechanism of NeuroD-deficient neuronal death has not been investigated. It was hypothesized that NeuroD-dependent neuronal death occurs through a Bax-dependent apoptotic pathway. Based on this hypothesis, this study attempted to rescue neuronal cell death by deleting the Bax gene in NeuroD null mice to investigate the role of NeuroD in surviving neurons. The NeuroD and Bax double null mice displayed a decrease in the number of apoptotic cells in the hippocampus and the cerebellum and the rescue of vestibulocochlear ganglion (VCG) neurons that failed to migrate and innervate. In addition, at E13.5, the NeuroD−/−Bax−/− VCG neurons failed to express TrkB and TrkC, which are known to be essential for the survival of those neurons. These data suggest that neuronal death in NeuroD null mice is mediated by Bax-dependent apoptosis and that NeuroD is required for the migration of VCG neurons. Finally, these data show that TrkB and TrkC expression in E13.5 VCG neurons requires NeuroD and that TrkB and TrkC expression may be necessary for the normal migration and innervations of those neurons.  相似文献   

11.
Mimicking mammalian apoptotic cells by exposing phosphatidylserine (PS) is a strategy used by virus and parasitic protozoa to escape host protective inflammatory responses. With Leishmania amazonensis (La), apoptotic mimicry is a prerogative of the intramacrophagic amastigote form of the parasite and is modulated by the host. Now we show that differently from what happens with amastigotes, promastigotes exposing PS are non-viable, non-infective cells, undergoing apoptotic death. As part of the normal metacyclogenic process occurring in axenic cultures and in the gut of sand fly vectors, a sub-population of metacyclic promastigotes exposes PS. Apoptotic death of the purified PS-positive (PSPOS) sub-population was confirmed by TUNEL staining and DNA laddering. Transmission electron microscopy revealed morphological alterations in PSPOS metacyclics such as DNA condensation, cytoplasm degradation and mitochondrion and kinetoplast destruction, both in in vitro cultures and in sand fly guts. TUNELPOS promastigotes were detected only in the anterior midgut to foregut boundary of infected sand flies. Interestingly, caspase inhibitors modulated parasite death and PS exposure, when added to parasite cultures in a specific time window. Efficient in vitro macrophage infections and in vivo lesions only occur when PSPOS and PS-negative (PSNEG) parasites were simultaneously added to the cell culture or inoculated in the mammalian host. The viable PSNEG promastigote was the infective form, as shown by following the fate of fluorescently labeled parasites, while the PSPOS apoptotic sub-population inhibited host macrophage inflammatory response. PS exposure and macrophage inhibition by a subpopulation of promastigotes is a different mechanism than the one previously described with amastigotes, where the entire population exposes PS. Both mechanisms co-exist and play a role in the transmission and development of the disease in case of infection by La. Since both processes confer selective advantages to the infective microorganism they justify the occurrence of apoptotic features in a unicellular pathogen.  相似文献   

12.
The most widely used histochemical marker of apoptosis (in situend labeling, TUNEL) detects both apoptotic and necrotic cells and evaluates only late stages of apoptosis. Hence, a specific and sensitive cellular marker of apoptosis is needed to determine the role of apoptotic death in biology and pathology. The present study describes a novel immunohistochemical procedure for the staining of apoptotic cells using a monoclonal antibody (MAb) to single-stranded DNA. This MAb stained all cells with the morphology typical of apoptosis in etoposide-treated HL-60, MOLT-4, and R9 cell cultures, in which apoptosis was accompanied by high, moderate, and low levels of internucleosomal DNA fragmentation, respectively. TUNEL stained all apoptotic cells in HL-60 cultures, nearly 60% of apoptotic cells in MOLT-4 cultures, and only 14% of apoptotic cells in R9 cultures. Apoptotic R9 cells, which progressed into secondary necrosis, retained MAb staining and became TUNEL-positive. Necrotic cells in MOLT-4 cultures treated with sodium azide were stained by TUNEL, but were negative for MAb staining. All floating cells at a late stage of apoptosis in MDA-MB-468 cultures treated with cisplatin were stained by both MAb and TUNEL. However, among adherent cells in the early stages of apoptosis, MAb stained nearly 20 times more cells than TUNEL. In histological sections of human tumor xenografts, MAb detected clusters of apoptotic cells in viable tumor tissue, but did not stain cells in areas of central ischemic necrosis. In contrast, TUNEL stained nuclei in necrotic areas. Thus, MAb to single-stranded DNA is a specific and sensitive cellular marker of apoptosis, which differentiates between apoptosis and necrosis and detects cells in the early stages of apoptosis.  相似文献   

13.
Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca2+ rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons.  相似文献   

14.
The differentiation and survival of heterozygous Lurcher (+/Lc) Purkinje cells in vitro was examined as a model system for studying how chronic ionic stress affects neuronal differentiation and survival. The Lurcher mutation in the δ2 glutamate receptor (GluRδ2) converts an orphan receptor into a membrane channel that constitutively passes an inward cation current. In the GluRδ2+/Lc mutant, Purkinje cell dendritic differentiation is disrupted and the cells degenerate following the first week of postnatal development. To determine if the GluRδ2+/Lc Purkinje cell phenotype is recapitulated in vitro, +/+, and +/Lc Purkinje cells from postnatal Day 0 pups were grown in either isolated cell or cerebellar slice cultures. GluRδ2+/+ and GluRδ2+/Lc Purkinje cells appeared to develop normally through the first 7 days in vitro (DIV), but by 11 DIV GluRδ2+/Lc Purkinje cells exhibited a significantly higher cation leak current. By 14 DIV, GluRδ2+/Lc Purkinje cell dendrites were stunted and the number of surviving GluRδ2+/Lc Purkinje cells was reduced by 75% compared to controls. However, treatment of +/Lc cerebellar cultures with 1‐naphthyl acetyl spermine increased +/Lc Purkinje cell survival to wild type levels. These results support the conclusion that the Lurcher mutation in GluRδ2 induces cell autonomous defects in differentiation and survival. The establishment of a tissue culture system for studying cell injury and death mechanisms in a relatively simple system like GluRδ2+/Lc Purkinje cells will provide a valuable model for studying how the induction of a chronic inward cation current in a single cell type affects neuronal differentiation and survival. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

15.
Apoptotic cell death induced by kainic acid (KA) in cultures of rat cerebellar granule cells (CGC) and in different brain regions of Wistar rat pups on postnatal day 21 (P21) was studied. In vitro , KA (100–500 μM) induced a concentration-dependent loss of cell viability in MTT assay and cell death had apoptotic morphology as studied by chromatin staining with propidium iodide (PI). In vivo , twenty-four hours after induction of status epilepticus (SE) by an intraperitoneal KA injection (5 mg/kg) we quantified apoptotic cells in hippocampus (CA1 and CA3), parietal cortex and cerebellum using PI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) technique. We report that dantrolene, a specific ryanodine receptor antagonist, was able to significantly reduce the apoptotic cell death in CGC cultures and in hyppocampal CA1 and parietal cortex regions. Our finding can be valuable for neuroprotective therapy strategies in patients with repeated generalized seizures or status epilepticus.  相似文献   

16.
p75 is expressed among Purkinje cells in the adult cerebellum, but its function has remained obscure. Here we report that p75 is involved in maintaining the frequency and regularity of spontaneous firing of Purkinje cells. The overall spontaneous firing activity of Purkinje cells was increased in p75−/− mice during the phasic firing period due to a longer firing period and accompanying reduction in silence period than in the wild type. We attribute these effects to a reduction in small conductance Ca2+-activated potassium (SK) channel activity in Purkinje cells from p75−/− mice compared with the wild type littermates. The mechanism by which p75 regulates SK channel activity appears to involve its ability to activate Rac1. In organotypic cultures of cerebellar slices, brain-derived neurotrophic factor increased RacGTP levels by activating p75 but not TrkB. These results correlate with a reduction in RacGTP levels in synaptosome fractions from the p75−/− cerebellum, but not in that from the cortex of the same animals, compared with wild type littermates. More importantly, we demonstrate that Rac1 modulates SK channel activity and firing patterns of Purkinje cells. Along with the finding that spine density was reduced in p75−/− cerebellum, these data suggest that p75 plays a role in maintaining normalcy of Purkinje cell firing in the cerebellum in part by activating Rac1 in synaptic compartments and modulating SK channels.  相似文献   

17.
In vitro, Purkinje cell behaviour is sometimes studied in a dissociated soma preparation in which the dendritic projection has been cleaved. A fraction of these dissociated somas spontaneously burst. The mechanism of this bursting is incompletely understood. We have constructed a biophysical Purkinje soma model, guided and constrained by experimental reports in the literature, that can replicate the somatically driven bursting pattern and which hypothesises Persistent Na+ current (INaP) to be its burst initiator and SK K+ current (ISK) to be its burst terminator.  相似文献   

18.
This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.  相似文献   

19.
The cerebellum is important for the integration of sensory perception and motor control, but its structure has mostly been studied in mammals. Here, we describe the cell types and neural tracts of the adult zebrafish cerebellum using molecular markers and transgenic lines. Cerebellar neurons are categorized to two major groups: GABAergic and glutamatergic neurons. The Purkinje cells, which are GABAergic neurons, express parvalbumin7, carbonic anhydrase 8, and aldolase C like (zebrin II). The glutamatergic neurons are vglut1+ granule cells and vglut2high cells, which receive Purkinje cell inputs; some vglut2high cells are eurydendroid cells, which are equivalent to the mammalian deep cerebellar nuclei. We found olig2+ neurons in the adult cerebellum and ascertained that at least some of them are eurydendroid cells. We identified markers for climbing and mossy afferent fibers, efferent fibers, and parallel fibers from granule cells. Furthermore, we found that the cerebellum-like structures in the optic tectum and antero-dorsal hindbrain show similar Parvalbumin7 and Vglut1 expression profiles as the cerebellum. The differentiation of GABAergic and glutamatergic neurons begins 3 days post-fertilization (dpf), and layers are first detectable 5 dpf. Using anti-Parvalbumin7 and Vglut1 antibodies to label Purkinje cells and granule cell axons, respectively, we screened for mutations affecting cerebellar neuronal development and the formation of neural tracts. Our data provide a platform for future studies of zebrafish cerebellar development.  相似文献   

20.
Brain lipid homeostasis is important for maintenance of brain cell function and synaptic communications, and is intimately linked to age‐related cognitive decline. Because of the blood–brain barrier's limiting nature, this tissue relies on a complex system for the synthesis and receptor‐mediated uptake of lipids between the different networks of neurons and glial cells. Using immunofluorescence, we describe the region‐specific expression of the lipolysis‐stimulated lipoprotein receptor (LSR), in the mouse hippocampus, cerebellum Purkinje cells, the ependymal cell interface between brain parenchyma and cerebrospinal fluid, and the choroid plexus. Colocalization with cell‐specific markers revealed that LSR was expressed in neurons, but not astrocytes. Latency in arms of the Y‐maze exhibited by young heterozygote LSR+/? mice was significantly different as compared to control LSR+/+, and increased in older LSR+/? mice. Filipin and Nile red staining revealed membrane cholesterol content accumulation accompanied by significantly altered distribution of LSR in the membrane, and decreased intracellular lipid droplets in the cerebellum and hippocampus of old LSR+/? mice, as compared to control littermates as well as young LSR+/? animals. These data therefore suggest a potential role of LSR in brain cholesterol distribution, which is particularly important in preserving neuronal integrity and thereby cognitive functions during aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号