首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xin Z  Han W  Zhao Z  Xia Q  Yin B  Yuan J  Peng X 《PloS one》2011,6(10):e25419
Interferon-α (IFN-α) is a natural choice for the treatment of hepatitis C, but half of the chronically infected individuals do not achieve sustained clearance of hepatitis C virus (HCV) during treatment with IFN-α alone. The virus can impair IFN-α signaling and cellular factors that have an effect on the viral life cycles. We found that the protein PCBP2 is down-regulated in HCV-replicon containing cells (R1b). However, the effects and mechanisms of PCBP2 on HCV are unclear. To determine the effect of PCBP2 on HCV, overexpression and knockdown of PCBP2 were performed in R1b cells. Interestingly, we found that PCBP2 can facilitate the antiviral activity of IFN-α against HCV, although the RNA level of HCV was unaffected by either the overexpression or absence of PCBP2 in R1b cells. RIP-qRT-PCR and RNA half-life further revealed that PCBP2 stabilizes the mRNA of STAT1 and STAT2 through binding the 3'Untranslated Region (UTR) of these two molecules, which are pivotal for the IFN-α anti-HCV effect. RNA pull-down assay confirmed that there were binding sites located in the C-rich tracts in the 3'UTR of their mRNAs. Stabilization of mRNA by PCBP2 leads to the increased protein expression of STAT1 and STAT2 and a consistent increase of phosphorylated STAT1 and STAT2. These effects, in turn, enhance the antiviral effect of IFN-α. These findings indicate that PCBP2 may play an important role in the IFN-α response against HCV and may benefit the HCV clinical therapy.  相似文献   

2.
A comparative study of STAT3 and STAT5 activity (assessed by tyrosine phosphorylation level) and the expression of an α-subunit of the interleukin-2 receptor (examined by cytophotometric evaluation of CD25 cell number) during phytohemaglutinin (PHA)-induced proliferation of human blood lymphocytes (HBLs) has been carried out. It was found that the level of STAT3 phosphorylation was high both in resting and competent HBLs and remained unchanged in the presence of PHA or interleukin-2 (IL-2). In contrast to STAT3, phosphorylation of STAT5 was not seen either in resting or competent HBL. In the presence of PHA, STAT5 phosphorylation was observed no earlier than in 2–5 h; maximal phosphorylation was detected after 24 h. In competent HBLs, exogenous IL-2 induced high phosphorylation of STAT5 in 30 min that was retained for the next 24–48 h. Alterations in the level of tyrosine phosphorylation of STAT5 correlated with CD25 expression. WHI-P131, a JAK3 kinase inhibitor, prevents STAT5 activation, CD25 surface expression, and lymphocyte proliferation. It is concluded that JAK3/STAT5 signaling via an IL-2 receptor is necessary to support the long-term expression of a high-affinity αβγc-receptor of IL-2 and HBL optimal proliferation.  相似文献   

3.
4.
5.
6.
《朊病毒》2013,7(6):412-419
ABSTRACT

Prions cause neurodegenerative diseases for which no cure exists. Despite decades of research activities the function of the prion protein (PrP) in mammalians is not known. Moreover, little is known on the molecular mechanisms of the self-assembly of the PrP from its monomeric state (cellular PrP, PrPC) to the multimeric state. The latter state includes the toxic species (scrapie PrP, PrPSc) knowledge of which would facilitate the development of drugs against prion diseases. Here we analyze the role of a tyrosine residue (Y169) which is strictly conserved in mammalian PrPs. Nuclear magnetic resonance (NMR) spectroscopy studies of many mammalian PrPC proteins have provided evidence of a conformational equilibrium between a 310-helical turn and a type I β turn conformation in the β2-α2 loop (residues 165–175). In vitro cell-free experiments of the seeded conversion of PrPC indicate that non-aromatic residues at position 169 reduce the formation of proteinase K-resistant PrP. Recent molecular dynamics (MD) simulations of monomeric PrP and several single-point mutants show that Y169 stabilizes the 310-helical turn conformation more than single-point mutants at position 169 or residues in contact with it. In the 310-helical turn conformation the hydrophobic and aggregation-prone segment 169-YSNQNNF-175 is buried and thus not-available for self-assembly. From the combined analysis of simulation and experimental results it emerges that Y169 is an aggregation gatekeeper with a twofold role. Mutations related to 3 human prion diseases are interpreted on the basis of the gatekeeper role in the monomeric state. Another potential role of the Y169 side chain is the stabilization of the ordered aggregates, i.e., reduction of frangibility of filamentous protofibrils and fibrils, which is likely to reduce the generation of toxic species.  相似文献   

7.
Cytokine and activation of lymphocytes are critical for tumor growth. We investigated whether interleukin (IL)-32β overexpression changes other cytokine levels and activates cytotoxic lymphocyte, and thus modify tumor growth. Herein, IL-32β inhibited B16 melanoma growth in IL-32β-overexpressing transgenic mice (IL-32β mice), and downregulated the expressions of anti-apoptotic proteins (bcl-2, IAP, and XIAP) and cell growth regulatory proteins (Ki-67 antigen (Ki-67) and proliferating cell nuclear antigen (PCNA)), but upregulated the expressions of pro-apoptotic proteins (bax, cleaved caspase-3, and cleaved caspase-9). IL-32β also inhibited colon and prostate tumor growth in athymic nude mice inoculated with IL-32β-transfected SW620 colon or PC3 prostate cancer cells. The forced expression of IL-32β also inhibited cell growth in cultured colon and prostate cancer cells, and these inhibitory effects were abolished by IL-32 small interfering RNA (siRNA). IL-10 levels were elevated, but IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were reduced in the tumor tissues and spleens of IL-32β mice, and athymic nude mice. The number of cytotoxic T (CD8+) and natural killer (NK) cells in tumor tissues, spleen, and blood was significantly elevated in IL-32β mice and athymic nude mice inoculated with IL-32β-transfected cancer cells. Constituted activated NF-κB and STAT3 levels were reduced in the tumor tissues of IL-32β mice and athymic nude mice, as well as in IL-32β-transfected cultured cancer cells. These findings suggest that IL-32β inhibits tumor growth by increasing cytotoxic lymphocyte numbers, and by inactivating the NF-κB and STAT3 pathways through changing of cytokine levels in tumor tissues.  相似文献   

8.
9.
The auxiliary β subunit plays an important role in the regulation of voltage-gated calcium (CaV) channels. Recently, it was revealed that β2e associates with the plasma membrane through an electrostatic interaction between N-terminal basic residues and anionic phospholipids. However, a molecular-level understanding of β-subunit membrane recruitment in structural detail has remained elusive. In this study, using a combination of site-directed mutagenesis, liposome-binding assays, and multiscale molecular-dynamics (MD) simulation, we developed a physical model of how the β2e subunit is recruited electrostatically to the plasma membrane. In a fluorescence resonance energy transfer assay with liposomes, binding of the N-terminal peptide (23 residues) to liposome was significantly increased in the presence of phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). A mutagenesis analysis suggested that two basic residues proximal to Met-1, Lys-2 (K2) and Trp-5 (W5), are more important for membrane binding of the β2e subunit than distal residues from the N-terminus. Our MD simulations revealed that a stretched binding mode of the N-terminus to PS is required for stable membrane attachment through polar and nonpolar interactions. This mode obtained from MD simulations is consistent with experimental results showing that K2A, W5A, and K2A/W5A mutants failed to be targeted to the plasma membrane. We also investigated the effects of a mutated β2e subunit on inactivation kinetics and regulation of CaV channels by PIP2. In experiments with voltage-sensing phosphatase (VSP), a double mutation in the N-terminus of β2e (K2A/W5A) increased the PIP2 sensitivity of CaV2.2 and CaV1.3 channels by ∼3-fold compared with wild-type β2e subunit. Together, our results suggest that membrane targeting of the β2e subunit is initiated from the nonspecific electrostatic insertion of N-terminal K2 and W5 residues into the membrane. The PS-β2e interaction observed here provides a molecular insight into general principles for protein binding to the plasma membrane, as well as the regulatory roles of phospholipids in transporters and ion channels.  相似文献   

10.
Pirh2 is a p53 inducible gene that encodes a RING-H2 domain and is proposed to be a main regulator of p53 protein, thus fine tuning the DNA damage response. Pirh2 interacts physically with p53 and promotes its MDM2-independent ubiquitination and subsequent degradation as well as participates in an auto-regulatory feedback loop that controls p53 function. Pirh2 also self-ubiquitinates. Interestingly, Pirh2 is overexpressed in a wide range of human tumors. In this study, we investigated the domains and residues essential for Pirh2 self-ubiquitination. Deletions were made in each of the three major domains of Pirh2: the N-terminal domain (NTD), Ring domain (RING), and C-terminal domain (CTD). The effects of these deletions on Pirh2 self-ubiquitination were then assessed using in vitro ubiquitination assays. Our results demonstrate that the RING domain is essential, but not sufficient, for Pirh2 self-ubiquitination and that residues 240–250 of the C-terminal domain are also essential. Our results demonstrate that Pirh2 mediated p53 polyubiquitination occurs mainly through the K48 residue of ubiquitin in vitro. Our data further our understanding of the mechanism of Pirh2 self-ubiquitination and may help identify valuable therapeutic targets that play roles in reducing the effects of the overexpression of Pirh2, thus maximizing p53''s response to DNA damage.  相似文献   

11.
12.
Aminoacyl-tRNA synthetases (AARSs) are ligases (EC.6.1.1.-) that catalyze the acylation of amino acids to their cognate tRNAs in the process of translating genetic information from mRNA to protein. Their amino acid and tRNA specificity are crucial for correctly translating the genetic code. Glycine is the smallest amino acid and the glycyl-tRNA synthetase (GlyRS) belongs to Class II AARSs. The enzyme is unusual because it can assume different quaternary structures. In eukaryotes, archaebacteria and some bacteria, it forms an ??2 homodimer. In some bacteria, GlyRS is an ??2??2 heterotetramer and shows a distant similarity to ??2 GlyRSs. The human pathogen eubacterium Campylobacter jejuni GlyRS (CjGlyRS) is an ??2??2 heterotetramer and is similar to Escherichia coli GlyRS; both are members of Class IIc AARSs. The two-step aminoacylation reaction of tetrameric GlyRSs requires the involvement of both ??- and ??-subunits. At present, the structure of the GlyRS ??2??2 class and the details of the enzymatic mechanism of this enzyme remain unknown. Here we report the crystal structures of the catalytic ??-subunit of CjGlyRS and its complexes with ATP, and ATP and glycine. These structures provide detailed information on substrate binding and show evidence for a proposed mechanism for amino acid activation and the formation of the glycyl-adenylate intermediate for Class II AARSs.  相似文献   

13.
Nicotinic acetylcholine receptors (nAChRs) are involved in fast synaptic transmission in the central and peripheral nervous system. Among the many different types of subunits in nAChRs, the β2 subunit often combines with the α4 subunit to form α4β2 pentameric channels, the most abundant subtype of nAChRs in the brain. Besides computational predictions, there is limited experimental data available on the structure of the β2 subunit. Using high-resolution NMR spectroscopy, we solved the structure of the entire transmembrane domain (TM1234) of the β2 subunit. We found that TM1234 formed a four-helix bundle in the absence of the extracellular and intracellular domains. The structure exhibited many similarities to those previously determined for the Torpedo nAChR and the bacterial ion channel GLIC. We also assessed the influence of the fourth transmembrane helix (TM4) on the rest of the domain. Although secondary structures and tertiary arrangements were similar, the addition of TM4 caused dramatic changes in TM3 dynamics and subtle changes in TM1 and TM2. Taken together, this study suggests that the structures of the transmembrane domains of these proteins are largely shaped by determinants inherent in their sequence, but their dynamics may be sensitive to modulation by tertiary and quaternary contacts.  相似文献   

14.
The α4β2 nicotinic acetylcholine receptor (nAChR) is the predominant heteromeric subtype of nAChRs in the brain, which has been implicated in numerous neurological conditions. The structural information specifically for the α4β2 and other neuronal nAChRs is presently limited. In this study, we determined structures of the transmembrane (TM) domains of the α4 and β2 subunits in lauryldimethylamine-oxide (LDAO) micelles using solution NMR spectroscopy. NMR experiments and size exclusion chromatography-multi-angle light scattering (SEC-MALS) analysis demonstrated that the TM domains of α4 and β2 interacted with each other and spontaneously formed pentameric assemblies in the LDAO micelles. The Na(+) flux assay revealed that α4β2 formed Na(+) permeable channels in lipid vesicles. Efflux of Na(+) through the α4β2 channels reduced intra-vesicle Sodium Green? fluorescence in a time-dependent manner that was not observed in vesicles without incorporating α4β2. The study provides structural insight into the TM domains of the α4β2 nAChR. It offers a valuable structural framework for rationalizing extensive biochemical data collected previously on the α4β2 nAChR and for designing new therapeutic modulators.  相似文献   

15.
16.
17.
The 2-microglobulin (2m) is a protein found in the serum in a free form and on the cell surface in a form noncovalently associated with the chain of the class I major histocompatibility complex (Mhc) molecules. In mammals, the 2m-encoding gene (B2m) is found on a chromosome different from the Mhc proper. We have isolated and characterized the B2m gene of the zebrafish, Brachydanio rerio, family Cyprinidae. We obtained both cDNA and genomic clones of the Brre-B2m gene. The cDNA clones contained the entire coding sequence, the entire 3 untranslated (UT) region, and at least part of the 5UT region. The genomic clone contained the entire Brre-B2m gene. The coding sequence specifies 97 amino acid residues of the mature protein so that the zebrafish 2m is two residues shorter than human and one residue shorter than cattle, fowl, or turkey 2m (codons at positions 85 and 86 have been deleted in the Brre-B2m. gene). The amino acid and nucleotide sequence similarities between zebrafish and human 2m (B2m) are 45% and 59%, respectively. Approximately 24% of the positions are invariant and an additional 9% show only conservative substitutions in comparisons which include all known 2m sequences (fish, avian, and mammalian). Most of the conserved positions are in the strands (some 47% of the -strand positions are conserved in the three vertebrate classes). The Brre-B2m gene consists of four exons separated by three introns. All of the introns are considerably shorter than the corresponding introns in the mammalian B2m genes. The coding sequences of the cDNA and the genomic clones are almost identical but the sequences of the 3'UT regions differ at 1.7% of the sites, suggesting that the genes borne by these clones might have diverged at least 0.7 million years (my) ago. In contrast to the human B2m gene, the Brre-B2m gene shows no bias in the distribution of the CpG dinucleotides: the dinucleotides are distributed evenly along the entire available sequence. The haploid genome of the zebrafish contains only one copy of the B2m gene.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers L05383 (B2M) and L05384 (B2RG). Correspondence to: J. Klein.  相似文献   

18.
Summary The commonest intracellular organelle characteristic of the Phylum Cnidaria or Coelenterata (Subclass Zoantharia) is the spirocyst. Based on scanning and transmission electron microscopy of the tentacles of sea anemones and corals, it appears that the tip of the spirocyst is either exposed to the environment or covered by a thin plasma membrane and often has a pebbled or knobby appearance. Surrounding the spirocyst tip is a ring-like structure which seems to be formed by the junction of the enclosing cell (the spirocyte) and the tip of the spirocyst. The spirocyst thread is continuous with the capsule wall and emerges from within the apical ring during discharge. No ciliary structures appear to be associated with spirocysts. Instead, two different types of microvilli have been found: short microvilli on the spirocyte itself and long microvilli furnished by the cell or cells surrounding the spirocyte. The significance of these findings is discussed in relation to the reception of stimuli for spirocyst discharge.Thanks are due Dr. Cadet Hand for the use of facilities of the Bodega Marine Laboratory of the University of California and Dr. R.K. Thompson, P. Nemanic, H. Sampson, F. Doroshow, E. Chang and B. Miller for expert technical assistance. The use of the facilities of the Electron Microscope Laboratory and the Electronics Research Laboratory of the University of California and the Electron Microscope Laboratory of the Florida State University is gratefully acknowledged. Part of this work was made possible by NSF Grant # GB-40547 to the senior author.  相似文献   

19.
20.
When the receptors for platelet-derived growth factor (PDGF) are activatedthey aggregate, become tyrosine-phosphorylated and elicit a cascade ofdown-stream signals, including mobilization of Ca2+ from intra- andextracellular stores. Receptor mobility in the plane of the membrane isa prerequisite for receptor aggregation and further signalling. Using humanforeskin fibroblasts (AG 1523) and fluorescence recovery afterphotobleaching (FRAP), we therefore assessed the lateral mobilitycharacteristics of PDGF-2 receptors by their diffusioncoefficient (D), and fraction of mobile receptors (R). This was done oncells stimulated with either normal human serum (NHS) or PDGF underdifferent Ca2+-conditions.The results suggest that both intra- and extracellular free Ca2+influence the mobility characteristics of the PDGF-2receptor. Interestingly, the extracellular Ca2+ seems to imposegeneral restrictions on the mobility of receptors, since R increased whenextracellular Ca2+ was quenched with EGTA, whereas intracellularclamping of Ca2+ transients with MABTAM (BAPT/AM) primarily affectedD. When both intra- and extracellular Ca2+ were quenced, D remainedlow and R high, further supporting the proposition that they achievedistinct effects. Inhibition of tyrosine phosphorylation with Erbstatin,partly inhibited the NHS effects and released PDGF-induced receptorimmobilization. Ratio imaging with Fura-2 displayed that both NHS and PDGFinduced changes in intracellular free [Ca2+]. In view of the presentdata it might have important effects on the state of the receptor in themembrane, for instance by regulating its lateral mobility, communicationwith other receptors and signalling functions in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号