首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eddy correlation technique was employed to measure net ecosystem carbon dioxide (CO2) (NEE) and water vapor exchange (LE) over a C3/C4 co-occurring wet temperate Miscanthus-type grassland in the Kanto plain of Japan in the 1999 growing season. The maximal mean canopy height and maximal leaf area index were 1.0m and 5.5, respectively. The daily maximal LE was approximately 540Wm–2. The maximum value of daily accumulative LE was 16.3MJday–1. Daily variation of the decoupling factor () suggests that in the morning LE decoupled with the atmosphere, and the available energy was the major driving force for LE, whereas in the afternoon LE coupled strongly with the atmosphere, and the atmospheric evaporative demand played a critical role in LE. The decline in (from 0.8 to 0.5) with the growing season demonstrates that LE decoupled from the atmosphere in the later growth season. The peak NEE value was 57.4µmolCO2m–2s–1 (the positive value signifies the canopy carbon gain was from the air). The maximal daily integrated NEE was 1.06molCO2m–2day–1 observed during the peak growth stage. A rectangular hyperbolic model was used to describe the relation between daytime NEE and incident photosynthetic photon flux density (PPFD). The net ecosystem CO2 was not light-saturated up to a PPFD level of 2000µmol m–2s–1. The initial slope estimated with the NEE–PPFD response model was approximately 0.042molCO2mol–1photon on average. The canopy light compensation point ranged from 210 to 430µmolm–2s–1 with an average of approximately 310µmolm–2s–1. Both the initial slope and the canopy light compensation point decreased as the canopy senesced. The switch in dominance from C3 to C4 plants played an important role in the canopy fluxes.  相似文献   

2.
The production of reactive oxygen species (ROS) plays important roles in the life cycle and in the stress response and defence mechanisms of plants. Various enzyme systems are involved in the formation of ROS in the apoplast, including plasmalemma NADPH oxidase and apoplastic peroxidases. The production of O 2 ·? and apoplastic peroxidase and exogenous NADH oxidation activities are all strongly dependent on the age of roots??the younger the root, the greater the activity. Apoplastic production of ROS is shown in the root by using specific histochemical probes, this ROS production is growing zone dependent. In the present study, using olive seedlings, differences were also observed between cultivars, especially in O 2 ·? production by the Verdial cultivar which was well above that of other cultivars studied. In all the cultivars, treatment of roots with methyl jasmonate (MeJA) or methyl salicylate (MeSA) increased O 2 ·? production. Similar results were observed for peroxidase activity, but not for the oxidation of exogenous NADH which was either unaffected (MeJA) or even partially inhibited (MeSA). A conclusion was that MeJA or MeSA induced apoplastic production of ROS does not use exogenous NADH. Treatment with diphenylene iodonium (DPI) reduced the formation of O 2 ·? , but affected neither peroxidase nor NADH oxidation activities. Cyanide inhibited O 2 ·? production and peroxidase and NADH oxidation activities. Treatment with MnCl2 had a strong stimulatory effect on peroxidase and NADH oxidation activities, but much less on O 2 ·? production. Finally, azide greatly reduced all activities, but especially O 2 ·? production. Together, these results indicate a relationship between oxidative activities and the processes of root growth, and that those activities are also dependent on the cultivar, as well as an involvement of peroxidases and plasmalemma NADPH oxidase in apoplast ROS production which is sensitive to DPI, azide, and cyanide but relatively insensitive to MnCl2, while exogenous NADH oxidation is linked to peroxidase activity.  相似文献   

3.
To determine if changes in microbial community composition and metabolic capacity alter decomposition patterns of young and old soil carbon pools, we incubated soils under conditions of varying temperature, N-availability, and water content. We used a soil from a pineapple plantation (CAM; 13C litter = –14.1) that had previously been under tropical forest (C3; 13C soil carbon = –26.5). Forest derived carbon represented 'old' carbon and plantation inputs represented 'new' carbon. In order to differentiate utilization of young (< 14 years) and old (> 14 years) soil carbon, we measured the 13C of respired CO2 and microbial phospholipid fatty acids (PLFAs) during a 103 day laboratory incubation. We determined community composition (PLFA and bacterial intergenic transcribed spacer (ITS) analysis) in addition to carbon degrading and nutrient releasing enzyme activities. We observed that greater quantities of older carbon were respired at higher temperatures (20 and 35°C) compared to the lower temperature (5°C). This effect could be explained by changes in microbial community composition and accompanying changes in enzyme activities that affect C degradation. Nitrogen addition stimulated the utilization of older soil carbon, possibly due to greater peroxidase activity, but microbial community composition was unaffected by this treatment. Increasing soil moisture had no effect on the utilization of older SOM, but enzyme activity typically declined. Increased oxidative enzyme activities in response to elevated temperature and nitrogen additions point to a plausible mechanism for alterations in C resource utilization patterns.  相似文献   

4.
The production of erythritol and the erythritol yield from glucose by Torula sp. were improved, in increasing order, by supplementing with 10 mg MnSO44H2O l–1, 2 mg CuSO45H2O l–1, and both 10 mg MnSO44H2O l–1 and 2 mg CuSO45H2O l–1. Mn2+ decreased the intracellular concentration of erythritol, whereas Cu2+ increased the activity of erythrose reductase in cells. These results suggest that Mn2+ altered the permeability of cells, whereas Cu2+ increased the activity of erythrose reductase in cells.  相似文献   

5.
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C. It was found to be able to grow in the presence of micromolar molecular oxygen (O2). Activity of NADH oxidase was detected in the cell-free extract of T. hypogea, from which an NADH oxidase was purified to homogeneity. The purified enzyme was a homodimeric flavoprotein with a subunit of 50 kDa, revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the reduction of O2 to hydrogen peroxide (H2O2), specifically using NADH as electron donor. Its catalytic properties showed that the NADH oxidase had an apparent Vmax value of 37 mol NADH oxidized min–1 mg–1 protein. Apparent Km values for NADH and O2 were determined to be 7.5 M and 85 M, respectively. The enzyme exhibited a pH optimum of 7.0 and temperature optimum above 85°C. The NADH-dependent peroxidase activity was also present in the cell-free extract, which could reduce H2O2 produced by the NADH oxidase to H2O. It seems possible that O2 can be reduced to H2O by the oxidase and peroxidase, but further investigation is required to conclude firmly if the purified NADH oxidase is part of an enzyme system that protects anaerobic T. hypogea from accidental exposure to O2.  相似文献   

6.
In plants, it has been proposed that hexacoordinate (class 1) non-symbiotic Hbs (nsHb-1) function in vivo as peroxidases. However, little is known about peroxidase activity of nsHb-1. We evaluated the peroxidase activity of rice recombinant Hb1 (a nsHb-1) by using the guaiacol/H2O2 system at pH 6.0 and compared it to that from horseradish peroxidase (HRP). Results showed that the affinity of rice Hb1 for H2O2 was 86-times lower than that of HRP (Km = 23.3 and 0.27 mM, respectively) and that the catalytic efficiency of rice Hb1 for the oxidation of guaiacol using H2O2 as electron donor was 2838-times lower than that of HRP (kcat/Km = 15.8 and 44 833 mM−1 min−1, respectively). Also, results from this work showed that rice Hb1 is not chemically modified and binds CO after incubation with high H2O2 concentration, and that it poorly protects recombinant Escherichia coli from H2O2 stress. These observations indicate that rice Hb1 inefficiently scavenges H2O2 as compared to a typical plant peroxidase, thus indicating that non-symbiotic Hbs are unlikely to function as peroxidases in planta.  相似文献   

7.
The effect of cadmium on microsomal membrane-bound peroxidases and their involvement in hydrogen peroxide production was studied in barley roots. One anionic and two cationic peroxidases were detected, which were strongly activated by Cd treatment. Positive correlation was found between root growth inhibition and increased peroxidase, NADH oxidase activity and H2O2 generation in root microsomal membrane fraction of Cd-treated barley roots.  相似文献   

8.
Changes in activities of the enzymes performing direct antioxidant functions were studied in 7–8-week-old plants Arabidopsis thaliana Heinh (L.) of Columbia (Col-0) ecotype. It was found that 5-day cold hardening at 2°C increased plant cold resistance to the subsequent stronger cooling. Under these conditions, the marked changes occurred in activities of superoxide dismutase and III type (guaiacol) peroxidses but not in that of catalase. The total peroxidase activity exceeded the catalase activity before cold hardening. Therefore, peroxidases are able to decompose more H2O2 than catalases and appear to make the dominant contribution to the protection from the cold damage.  相似文献   

9.
Hydrogen peroxide (H2O2) scavenging systems of spruce (Picea abies) needles were investigated in both extracts obtained from the extracellular space and extracts of total needles. As assessed by the lack of activity of symplastic marker enzymes, the extracellular washing fluid was free from intracellular contaminations. In the extracellular washing fluid ascorbate, glutathione, cysteine, and high specific activities of guaiacol peroxidases were observed. Guaiacol peroxidases in the extracellular washing fluid and needle homogenates had the same catalytic properties, i.e. temperature optimum at 50°C, pH optimum in the range of pH 5 to 6 and low affinity for guaiacol (apparent Km = 40 millimolar) and H2O2 (apparent Km = 1-3 millimolar). Needle homogenates contained ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase, and catalase, but not glutathione peroxidase activity. None of these activities was detected in the extracellular washing fluid. Ascorbate and glutathione related enzymes were freeze sensitive; ascorbate peroxidase was labile in the absence of ascorbate. The significance of extracellular antioxidants for the detoxification of injurious oxygen species is discussed.  相似文献   

10.
P.-O. Lundquist 《Plant and Soil》2005,273(1-2):235-244
The carbon cost of nitrogenase activity was investigated to determine symbiotic efficiency of the actinorhizal root nodule symbiosis between the woody perennial Alnus incana and the soil bacterium Frankia. Respiration (CO2 production) and nitrogenase activity (H2 production) by intact nodulated root systems were continuously recorded in short-term assays in an open-flow gas exchange system. The assays were conducted in N2:O2, thus under N2-fixing conditions, in all experiments except for one. This avoided the declines in nitrogenase activity and respiration due to N2 deprivation that occur in acetylene reduction assays and during extended Ar:O2 exposures in H2 assays. Two approaches were used: (i) direct estimation of root and nodule respiration by removing nodules, and (ii) decreasing the partial pressure of O2 from 21 to 15% to use the strong relationship between respiration and nitrogenase activity to calculate CO2/H2. The electron allocation of nitrogenase was determined to be 0.6 and used to convert the results into moles of CO2 produced per 2e transferred by nitrogenase to reduction of N2. The results ranged from 2.6 to 3.4mol CO2 produced per 2e. Carbon cost expressed as gC produced per gN reduced ranged from 4.5 to 5.8. The result for this actinorhizal tree symbiosis is in the low range of estimates for N2-fixing actinorhizal symbioses and crop legumes. Methodology and comparisons of root nodule physiology among actinorhizal and legume plants are discussed.  相似文献   

11.
Cytochrome bd from Escherichia coli is able to oxidize such substrates as guaiacol, ferrocene, benzohydroquinone, and potassium ferrocyanide through the peroxidase mechanism, while none of these donors is oxidized in the oxidase reaction (i.e. in the reaction that involves molecular oxygen as the electron acceptor). Peroxidation of guaiacol has been studied in detail. The dependence of the rate of the reaction on the concentration of the enzyme and substrates as well as the effect of various inhibitors of the oxidase reaction on the peroxidase activity have been tested. The dependence of the guaiacol-peroxidase activity on the H2O2 concentration is linear up to the concentration of 8 mM. At higher concentrations of H2O2, inactivation of the enzyme is observed. Guaiacol markedly protects the enzyme from inactivation induced by peroxide. The peroxidase activity of cytochrome bd increases with increasing guaiacol concentration, reaching saturation in the range from 0.5 to 2.5 mM, but then starts falling. Such inhibitors of the ubiquinol-oxidase activity of cytochrome bd as cyanide, pentachlorophenol, and 2-n-heptyl 4-hydroxyquinoline-N-oxide also suppress its guaiacol-peroxidase activity; in contrast, zinc ions have no influence on the enzyme-catalyzed peroxidation of guaiacol. These data suggest that guaiacol interacts with the enzyme in the center of ubiquinol binding and donates electrons into the di-heme center of oxygen reduction via heme b 558, and H2O2 is reduced by heme d. Although the peroxidase activity of cytochrome bd from E. coli is low compared to peroxidases, it might be of physiological significance for the bacterium itself and plays a pathophysiological role for humans and animals.  相似文献   

12.
This work was undertaken to verify whether surface NADH oxidases or peroxidases are involved in the apoplastic reduction of Fe(III). The reduction of Fe(III)-ADP, linked to NADH-dependent activity of horseradish peroxidase (HRP), protoplasts and cells of Acer pseudoplatanus, was measured as Fe(II)-bathophenanthrolinedisulfonate (BPDS) chelate formation. In the presence of BPDS in the incubation medium (method 1), NADH-dependent HRP activity was associated with a rapid Fe(III)-ADP reduction that was almost completely inhibited by superoxide dismutase (SOD), while catalase only slowed down the rate of reduction. A. pseudoplatanus protoplasts and cells reduced extracellular Fe(III)-ADP in the absence of exogenously supplied NADH. The addition of NADH stimulated the reduction. SOD and catalase only inhibited the NADH-dependent Fe(III)-ADP reduction. Mn(II), known for its ability to scavenge O?2, inhibited both the independent and NADH-dependent Fe(III)-ADP reduction. The reductase activity of protoplasts and cells was also monitored in the absence of BPDS (method 2). The latter was added only at the end of the reaction to evaluate Fe(II) formed. Also, in this case, both preparations reduced Fe(III)-ADP. However, the addition of NADH did not stimulate Fe(III)-ADP reduction but, instead, lowered it. This may be related to a re-oxidation of Fe(II) by H2O2 that could also be produced during NADH-dependent peroxidase activity. Catalase and SOD made the Fe(III)-ADP reduction more efficient because, by removing H2O2 (catalase) or preventing H2O2 formation (SOD), they hindered the re-oxidation of Fe(II) not chelated by BPDS. As with the result obtained by method 1, Mn(II) inhibited Fe(III)-ADP reduction carried out in the presence or absence of NADH. The different effects of SOD and Mn(II), both scavengers of O?2, may depend on the ability of Mn(II) to permeate the cells more easily than SOD. These results show that A. pseudoplatanus protoplasts and cells reduce extracellular Fe(III)-ADP. Exogenously supplied NADH induces an additional reduction of Fe(III) by the activity of NADH peroxidases of the plasmalemma or cell wall. However, the latter can also trigger the formation of H2O2 that, reacting with Fe(II) (not chelated by BPDS), generates hydroxyl radicals and converts Fe(II) to Fe(III) (Fenton's reaction).  相似文献   

13.
Hydrogen peroxide production by roots and its stimulation by exogenous NADH   总被引:4,自引:0,他引:4  
H2O2 production by roots of young seedlings was monitored using a non-destructive in vivo assay at pH 5.0. A particularly high rate of H2O2 production was measured in the roots of soybean (Glycine max L. cv. Labrador) seedlings which were used for further investigation of the physiological and enzymological properties of apoplastic H2O2 production. In the soybean root H2O2 production can be stimulated 10-fold by exogenous NADH or NADPH. This response displays typical features of a peroxidase-catalyzed oxidase reaction using NAD(P)H as electron donor for the reduction of O2 to H2O2. Comparative measurements showed that the NADH-induced H2O2 production of the roots resembles the H2O2-forming activity of horseradish peroxidase with respect to NADH and O2 concentration requirements and sensitivity to inhibition by KCN, NaN3, superoxide dismutase and catalase. NADH-induced H2O2 production can be observed with similar intensity in all regions of the root, in agreement with the distribution of apoplastic peroxidase activity. In contrast, the activity responsible for the basal H2O2 production in the absence of exogenous NADH was mainly confined to a short subapical zone of the root and differs from the NADH-induced reaction by insensitivity to inhibition by superoxide dismutase and a strikingly lower requirement for O2. It is concluded that the basal H2O2 production of the root is mediated by an enzyme different from peroxidase, possibly a plasma membrane O2?-producing oxidase.  相似文献   

14.
The two peroxidase isoenzyme groups (GI and GIII) localized in the cell walls of tobacco (Nicotiana tabacum L.) tissues were compared with respect to their capacity for NADH-dependent H2O2 formation. Peroxidases of the GIII group are slightly more active than those of the GI group when both are assayed under optimal conditions. This difference is probably not of major regulatory importance. NADH-dependent formation of H2O2 required the presence of Mn2+ and a phenol as cofactors. The addition of H2O2 to the reaction mixture accelerated subsequent NADH-dependent H2O2 formation. In the presence of both cofactors or Mn2+ alone, catalase oxidized NADH. However, if the cofactors were absent or if only dichlorophenol was present, catalase inhibited NADH oxidation. No H2O2 accumulation occurred in the presence of catalase. Superoxide dismutase inhibited NADH oxidation quite significantly indicating the involvement of the superoxide radical in the peroxidase reaction. These results are interpreted to mean that the reactions whereby tobacco cell wall peroxidases catalyze NADH-dependent H2O2 formation are similar to those proposed for horseradish peroxidase (Halliwell 1978 Planta 140: 81-88).  相似文献   

15.
Barry Halliwell 《Planta》1978,140(1):81-88
The enzyme horseradish peroxidase (EC 1.11.1.7) catalyses oxidation of NADH. NADH oxidation is prevented by addition of the enzyme superoxide dismutase (EC 1.15.1.1) to the reaction mixture before adding peroxidase but addition of dismutase after peroxidase has little inhibitory effect. Catalase (EC 1.11.1.6) inhibits peroxidase-catalysed NADH oxidation when added at any time during the reaction. Apparently the peroxidase uses hydrogen peroxide (H2O2) generated by non-enzymic breakdown of NADH to catalyse oxidation of NADH to a free-radical, NAD., which reduces oxygen to the superoxide free-radical ion, O2 .-. Some of the O2 .- reacts with peroxidase to give peroxidase compound III, which is catalytically inactive in NADH oxidation. The remaining O2 .- undergoes dismutation to O2 and H2O2. O2 .- does not react with NADH at significant rates. Mn2+ or lactate dehydrogenase stimulate NADH oxidation by peroxidase because they mediate a reaction between O2 .- and NADH. 2,4-Dichlorophenol, p-cresol and 4-hydroxycinnamic acid stimulate NADH oxidation by peroxidase, probably by breaking down compound III and so increasing the amount of active peroxidase in the reaction mixture. Oxidation in the presence of these phenols is greatly increased by adding H2O2. The rate of NADH oxidation by peroxidase is greatest in the presence of both Mn2+ and those phenols which interact with compound III. Both O2 .- and H2O2 are involved in this oxidation, which plays an important role in lignin synthesis.  相似文献   

16.
Inoculation of sugar mill by-products compost with N2-fixing bacteria may improve its quality by increasing total N and available P. Compost was inoculated with Azotobacter vinelandii(ATCC 478), Beijerinckia derxii (ATCC 49361), and Azospirillumsp. TS8, each alone and all three together. Numbers of all N2-fixing bacteria in compost declined from an initial population of 5×105cellsg–1 during incubation. The population of Azotobacter declined to approximately 2×102cellsg–1 and the population of Beijerinckia and Azospirillum declined to approximately 9×103 and 3.5×104cellsg–1 respectively, at day 50. Inoculation with N2-fixing bacteria increased acetylene reduction, total N by 6–16 and available P by 25–30% in comparison to the uninoculated control. Increasing the N content and P availability of compost increases its value and there may be additional benefit from providing N2 fixing bacteria.  相似文献   

17.
NADH coenzyme Q reductase (EC 1.6.5.3) has been suggested in the literature to be inactivated by ischaemia. In the present study, NADH coenzyme Q reductase activity was localized in unfixed cryostat sections of ischaemic rat livers and quantified using image analysis. In vitro ischaemia was induced by storage of rat liver fragments for 30, 60, and 120min at 37°C. In vivo ischaemia was provoked by clamping the afferent vessels of median and left lateral liver lobes for 60min followed by 30, 60 and 180min of reperfusion. NADH coenzyme Q reductase activity was demonstrated with the tetrazolium salt method in the presence of polyvinyl alcohol. Final reaction product was found in liver parenchymal cells and its distribution was homogeneous within liver lobules. Only low amounts of final reaction product were formed when the incubation was performed in the absence of the substrate NADH. A non-linear relation was found between the absorbance and incubation time when the reaction was performed in the presence of NADH. Therefore, the initial velocity was taken as the true rate of enzyme activity. A linear relationship was found for the initial velocity and section thickness up to 6µm followed by a levelling off. Electron microscopically, NADH coenzyme Q reductase activity was localized at the outer and inner membranes of mitochondria. In vitro ischaemia up to 120min did not affect NADH coenzyme Q reductase activity. At 30min reperfusion after in vivo ischaemia for 60min enzyme activity was slightly decreased in certain foci which also showed diminished lactate dehydrogenase activity. A further decrease of enzyme activities in foci was observed at 180min reperfusion after ischaemia. It is concluded that NADH coenzyme Q reductase activity is not sensitive to ischaemia. Furthermore, it is likely that the enzyme leaks from liver parenchymal cells into the circulation during reperfusion after ischaemia.  相似文献   

18.
Changes in the level of hydrogen peroxide (H2O2) and activity of peroxidases towards phenolic substrates (EC 1.11.1.7) such as pyrogallol (PPX), syringaldazine (SPX) and guaiacol (GPX), and cytosolic ascorbate peroxidase (cAPX, EC 1.11.1.11) in response to infestation of cowpea aphid (Aphis craccivora Koch) were analyzed in soybean (Glycine max (L.) Merr. cv. “Nam Dan”) at the V3 stage (first two trifoliate leaves fully developed, third trifoliate leaf unrolled) for 96 h post-infestation (hpi). Influence of A. craccivora at a varied population size (10, 20 and 30 individuals per each soybean plant) caused a burst of H2O2 generation in the aphid-infested leaves at 12 hpi. Paralleling the H2O2 accumulation, peroxidase activity in all the infested plants remarkably increased and was significantly higher than that observed in controls (uninfested plants). The cascade of enzymes induced was continuously overlapped by the early enhancement of SPX within 6–24 hpi, an expression of cAPX (12–48 hpi) followed by an accumulation of GPX (24–72 hpi) and PPX (24–96 hpi). The differential induction of SPX, GPX, PPX and cAPX resulted in a rapid reduction of H2O2 content in aphid-infested leaves, and the activity of peroxidase was closely correlated with the intensity of A. craccivora infestation around the defined points of time at which the activity of each enzyme reached the maximum level. The increase in activity of peroxidases matched their function as controlling accumulation of H2O2 and detoxifying this reactive oxygen product when soybean plants were challenged with cowpea aphid. Furthermore, peroxidases could directly deter cowpea aphid feeding through other functions such as the anti-nutritive and/or toxicological defenses and/or limiting the penetration of aphid stylets into plant tissues via participating to strengthen and reinforce the cell wall barrier. These results indicated that peroxidases may be some elements of the defense system that increased the resistance of G. max cv. “Nam Dan” to infestation of A. craccivora.  相似文献   

19.
We have examined the substrate specificity and inhibitor sensitivity of H2O2 formation by rat heart mitochondria. Active H2O2 production requires both a high fractional reduction of Complex I (indexed by NADH/NAD+ + NADH ratio) and a high membrane potential, . These conditions are achieved with supraphysiological concentrations of succinate. With physiological concentrations of NAD-linked substrates, rates of H2O2 formation are much lower (less than 0.1% of respiratory chain electron flux) but may be stimulated by the Complex III inhibitor antimycin A, but not by myxothiazol. Addition of Mn2+ to give 10 nmol/mg of mitochondrial protein enhances H2O2 production with all substrate combinations, possibly by repleting mitochondrial superoxide dismutase with this cation. Contrary to previously published work, no increased activity of H2O2 production was found with heart mitochondria from senescent (24 month) rats, relative to young adults (6 month).  相似文献   

20.
The mechanism of uptake of water-insoluble -sitosterol by a newly isolated strain of Arthrobacter simplex SS-7 was studied. The production of an extracellular sterol-pseudosolubilizing protein during growth of A. simplex on -sitosterol was demonstrated by isolating the factor from the cell-free supernatant and its subsequent purification by Sephadex G-150 column chromatography. The M r of the purified sterol-pseudosolubilizing protein determined by SDS–PAGE was 19kDa. The rate of sterol pseudosolubilization (5.2×10–3g l–1h–1) could not adequately account for the rate of sterol uptake (72×10–3g l–1h–1) and the specific growth rate (56×10–3 h–1). However in the unfavourable growth condition, when the cells were treated with sodium azide at the level of 30–60% of MIC, the sterol pseudosolubilization accounted for nearly 74% of the total growth containing 96% free cells. Cellular adherence to substrate particles was found to play an active role in the normal growth of the strain on -sitosterol. Unlike sodium acetate-grown cells, whose surface activity was negligible (60mNm–1), the sterol-grown cells had strong surface activity (40mNm–1). The high lipid content and long chain fatty acids in the cell-wall of -sitosterol-grown cells probably contribute to the high sterol adherence activity of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号