首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We assessed the relative changes in airways and lung tissue with bronchoconstriction, and the changes in each during and following a deep inhalation (DI). We partitioned pulmonary resistance (RL) into airway (Raw) and tissue (Vtis) components using alveolar capsules in 10 anesthetized, paralyzed, and open-chested dogs ventilated sinusoidally with 350-ml breaths at 1 Hz. We made measurements before and during bronchoconstriction induced by vagal stimulation or inhalation of histamine or prostaglandin F2 alpha (PGF2 alpha), each of which decreased dynamic compliance by approximately 40%. With histamine and PGF2 alpha the rise in RL was predominantly due to Vtis. With vagal stimulation there was a relatively greater increase in Raw than Vtis. At higher lung volumes, Vtis increases offset falls in Raw, producing higher RL at these volumes before and during constriction with PGF2 alpha and histamine. During constriction with vagal stimulation, the fall in Raw with inflation overrode the rise in Vtis, resulting in a lower RL at the higher compared with the lower lung volume. The changes seen after a DI in the control and constricted states were due to alterations in tissue properties, both viscous and elastic. However, the relative hysteresis of the airways and parenchyma were equal, since Raw, our index of airway size, was unchanged after a DI.  相似文献   

2.
The maximal effect induced by methacholine (MCh) aerosols on pulmonary resistance (RL), and the effects of altering lung volume and O3 exposure on these induced changes in RL, was studied in five anesthetized and paralyzed dogs. RL was measured at functional residual capacity (FRC), and lung volumes above and below FRC, after exposure to MCh aerosols generated from solutions of 0.1-300 mg MCh/ml. The relative site of response was examined by magnifying parenchymal [RL with large tidal volume (VT) at fast frequency (RLLS)] or airway effects [RL with small VT at fast frequency (RLSF)]. Measurements were performed on dogs before and after 2 h of exposure to 3 ppm O3. MCh concentration-response curves for both RLLS and RLSF were sigmoid shaped. Alterations in mean lung volume did not alter RLLS; however, RLSF was larger below FRC than at higher lung volumes. Although O3 exposure resulted in small leftward shifts of the concentration-response curve for RLLS, the airway dominated index of RL (RLSF) was not altered by O3 exposure, nor was the maximal response using either index of RL. These data suggest O3 exposure does not affect MCh responses in conducting airways; rather, it affects responses of peripheral contractile elements to MCh, without changing their maximal response.  相似文献   

3.
We have recently shown in dogs that much of the increase in lung resistance (RL) after induced constriction can be attributed to increases in tissue resistance, the pressure drop in phase with flow across the lung tissues (Rti). Rti is dependent on lung volume (VL) even after induced constriction. As maximal responses in RL to constrictor agonists can also be affected by changes in VL, we questioned whether changes in the plateau response with VL could be attributed in part to changes in the resistive properties of lung tissues. We studied the effect of changes in VL on RL, Rti, airway resistance (Raw), and lung elastance (EL) during maximal methacholine (MCh)-induced constriction in 8 anesthetized, paralyzed, open-chest mongrel dogs. We measured tracheal flow and pressure (Ptr) and alveolar pressure (PA), the latter using alveolar capsules, during tidal ventilation [positive end-expiratory pressure (PEEP) = 5.0 cmH2O, tidal volume = 15 ml/kg, frequency = 0.3 Hz]. Measurements were recorded at baseline and after the aerosolization of increasing concentrations of MCh until a clear plateau response had been achieved. VL was then altered by changing PEEP to 2.5, 7.5, and 10 cmH2O. RL changed only when PEEP was altered from 5 to 10 cmH2O (P < 0.01). EL changed when PEEP was changed from 5 to 7.5 and 5 to 10 cmH2O (P < 0.05). Rti and Raw varied significantly with all three maneuvers (P < 0.05). Our data demonstrate that the effects of VL on the plateau response reflect a complex combination of changes in tissue resistance, airway caliber, and lung recoil.  相似文献   

4.
Tissue viscance (Vti), the pressure drop across the lung tissues in phase with flow, increases after induced constriction. To gain information about the possible site of response, we induced increases in Vti with methacholine (MCh) and attempted to correlate these changes with alterations in lung morphology. We measured tracheal (Ptr) and alveolar pressure (PA) in open-chest rabbits during mechanical ventilation [frequency = 1 Hz, tidal volume = 5 ml/kg, positive end-expiratory pressure (PEEP) = 5 cmH2O] under control conditions and after administration of saline or MCh (32 or 128 mg/ml) aerosols. We calculated lung elastance (EL), lung resistance (RL), Vti, and airway resistance (Raw) by fitting the equation of motion to changes in Ptr and PA. The lungs were then frozen in situ with liquid nitrogen (PEEP = 5 cmH2O), excised, and processed using freeze substitution techniques. Airway constriction was assessed by measuring the ratio of the airway lumen (A) to the ideally relaxed area (Ar). Tissue distortion was assessed by measuring the mean linear intercept between alveolar walls (Lm), the standard deviation of Lm (SDLm), and an atelectasis index (ATI) derived by calculating the ratio of tissue to air space using computer image analysis. RL, Vti, and EL were significantly increased after MCh, and Raw was unchanged. A/Ar, Lm, SDLm, and ATI all changed significantly with MCh. Log-normalized change (% of baseline) in Vti significantly correlated with A/Ar (r = -0.693), Lm (r = 0.691), SDLm (r = 0.648), and ATI (r = 0.656). Hence, changes in lung tissue mechanics correlated with changes in morphometric indexes of parenchymal distortion and airway constriction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We examined the effects of lung volume on the bronchoconstriction induced by inhaled aerosolized methacholine (MCh) in seven normal subjects. We constructed dose-response curves to MCh, using measurements of inspiratory pulmonary resistance (RL) during tidal breathing at functional residual capacity (FRC) and after a change in end-expiratory lung volume (EEV) to either FRC -0.5 liter (n = 5) or FRC +0.5 liter (n = 2). Aerosols of MCh were generated using a nebulizer with an output of 0.12 ml/min and administered for 2 min in progressively doubling concentrations from 1 to 256 mg/ml. After MCh, RL rose from a base-line value of 2.1 +/- 0.3 cmH2O. 1-1 X s (mean +/- SE; n = 7) to a maximum of 13.9 +/- 1.8. In five of the seven subjects a plateau response to MCh was obtained at FRC. There was no correlation between the concentration of MCh required to double RL and the maximum value of RL. The dose-response relationship to MCh was markedly altered by changing lung volume. The bronchoconstrictor response was enhanced at FRC - 0.5 liter; RL reached a maximum of 39.0 +/- 4.0 cmH2O X 1-1 X s. Conversely, at FRC + 0.5 liter the maximum value of RL was reduced in both subjects from 8.2 and 16.6 to 6.0 and 7.7 cmH2O X 1-1 X s, respectively. We conclude that lung volume is a major determinant of the bronchoconstrictor response to MCh in normal subjects. We suggest that changes in lung volume act to alter the forces of interdependence between airways and parenchyma that oppose airway smooth muscle contraction.  相似文献   

6.
Lung mechanics and airway responsiveness to methacholine (MCh) were studied in seven volunteers before and after a 20-min intravenous infusion of saline. Data were compared with those of a time point-matched control study. The following parameters were measured: 1-s forced expiratory volume, forced vital capacity, flows at 40% of control forced vital capacity on maximal (Vm(40)) and partial (Vp(40)) forced expiratory maneuvers, lung volumes, lung elastic recoil, lung resistance (Rl), dynamic elastance (Edyn), and within-breath resistance of respiratory system (Rrs). Rl and Edyn were measured during tidal breathing before and for 2 min after a deep inhalation and also at different lung volumes above and below functional residual capacity. Rrs was measured at functional residual capacity and at total lung capacity. Before MCh, saline infusion caused significant decrements of forced expiratory volume in 1 s, Vm(40), and Vp(40), but insignificantly affected lung volumes, elastic recoil, Rl, Edyn, and Rrs at any lung volume. Furthermore, saline infusion was associated with an increased response to MCh, which was not associated with significant changes in the ratio of Vm(40) to Vp(40). In conclusion, mild airflow obstruction and enhanced airway responsiveness were observed after saline, but this was not apparently due to altered elastic properties of the lung or inability of the airways to dilate with deep inhalation. It is speculated that it was likely the result of airway wall edema encroaching on the bronchial lumen.  相似文献   

7.
A single-projection X-ray technique showed an increase in functional residual capacity (FRC) in conscious mice in response to aerosolized methacholine (MCh) with little change in airway resistance (Raw) measured using barometric plethysmography (Lai-Fook SJ, Houtz PK, Lai Y-L. J Appl Physiol 104: 521-533, 2008). The increase in FRC presumably prevented airway constriction by offsetting airway contractility. We sought a more direct measure of airway constriction. Anesthetized Balb/c mice were intubated with a 22-G catheter, and tantalum dust was insufflated into the lungs to produce a well-defined bronchogram. After overnight recovery, the conscious mouse was placed in a sealed box, and bronchograms were taken at maximum and minimum points of the box pressure cycle before (control) and after 1-min exposures to 25, 50, and 100 mg/ml MCh aerosol. After overnight recovery, each mouse was studied under both room and body temperature box air conditions to correct for gas compression effects on the control tidal volume (Vt) and to determine Vt and Raw with MCh. Airway diameter (D), FRC, and Vt were measured from the X-ray images. Compared with control, D decreased by 24%, frequency decreased by 35%, FRC increased by 120%, and Raw doubled, to reach limiting values with 100 mg/ml MCh. Vt was unchanged with MCh. The limiting D occurred near zero airway elastic recoil, where the maximal contractility was relatively small. The conscious mouse adapted to MCh by breathing at a higher lung volume and reduced frequency to reach a limit in constriction.  相似文献   

8.
Six anesthetized paralyzed open-chest New Zealand White male rabbits were studied to obtain the maximal or plateau response to the inhalation of methacholine. Tracheal flow, tracheal pressure, and, by use of alveolar capsules, alveolar pressure were measured during tidal mechanical ventilation. We calculated total lung resistance (RL), tissue viscance (Vti), and lung elastance by digital fitting of the equation of motion to changes in tracheal and alveolar pressure. Airways resistance (Raw) was calculated as RL-Vti. Measurements were made under control conditions and after delivery of increasing concentrations of methacholine aerosol (0.5-128 mg/ml). We found that Vti accounted for the major proportion of RL both under control conditions (64.5 +/- 15.9%) and after methacholine-induced constriction (83.6 +/- 11.8%). There was a significant negative correlation between logarithmic percent change in Raw and Vti at the onset of the plateau response (r = 0.973). Furthermore, the slope of the relationship between log change in Vti and log change in Raw during the plateau response was strongly correlated with the degree of tissue response at the onset of the plateau (r = 0.957). Vti was positively correlated with lung elastance both before and during the plateau response (r = 0.946). We propose that the negative correlation between tissue resistance and Raw at the level of the plateau is consistent with a model of a mechanically interdependent lung, where decreases in airway caliber are limited by the constriction of the surrounding parenchyma.  相似文献   

9.
We examined the effects of chest wall strapping (CWS) on the response to inhaled methacholine (MCh) and the effects of deep inspiration (DI). Eight subjects were studied on 1 day with MCh inhaled without CWS (CTRL), 1 day with MCh inhaled during CWS (CWSon/on), and 1 day with MCh inhaled during temporary removal of CWS (CWSoff/on). On the CWSon/on day, MCh caused greater increases in pulmonary resistance, upstream resistance, dynamic elastance, residual volume, and greater decreases in maximal expiratory flow than on the CTRL day. On the CWSoff/on day, the changes in these parameters with MCh were not different from the CTRL day. Six of the subjects were again studied using the same protocol on CTRL and CWSon/on days, except that, on a third day, MCh was given after applying the CWS, but the measurements before and after the inhalation were made without CWS (CWSon/off). The latter sequence was associated with more severe airflow obstruction than during CTRL, but less than with CWSon/on. The bronchodilator effects of a DI were blunted when CWS was applied during measurements (CWSon/on and CWSoff/on) but not after it was removed (CWSon/off). We conclude that CWS is capable of increasing airway responsiveness only when it is applied during the inhalation of the constrictor agent. We speculate that breathing at low lung volumes induced by CWS enhances airway narrowing because the airway smooth muscle is adapted at a length at which the contractile apparatus is able to generate a force greater than normal.  相似文献   

10.
We investigated the effects of a selective beta(2)-agonist, salbutamol, and of phosphodiesterase type 4 inhibition with 4-(3-butoxy-4-methoxy benzyl)-2-imidazolidinone (Ro-20-1724) on the airway and parenchymal mechanics during steady-state constriction induced by MCh administered as an aerosol or intravenously (iv). The wave-tube technique was used to measure the lung input impedance (ZL) between 0.5 and 20 Hz in 31 anesthetized, paralyzed, open-chest adult Brown Norway rats. To separate the airway and parenchymal responses, a model containing an airway resistance (Raw) and inertance (Iaw), and a parenchymal damping (G) and elastance (H), was fitted to ZL spectra under control conditions, during steady-state constriction, and after either salbutamol or Ro-20-1724 delivery. In the Brown Norway rat, the response to iv MCh infusion was seen in Raw and G, whereas continuous aerosolized MCh challenge produced increases in G and H only. Both salbutamol, administered either as an aerosol or iv, and Ro-20-1724 significantly reversed the increases in Raw and G when MCh was administered iv. During the MCh aerosol challenge, Ro-20-1724 significantly reversed the increases in G and H, whereas salbutamol had no effect. These results suggest that, after MCh-induced changes in lung function, salbutamol increases the airway caliber. Ro-20-1724 is effective in reversing the airway narrowings, and it may also decrease the parenchymal constriction.  相似文献   

11.
Kaczka, David W., Edward P. Ingenito, Bela Suki, and KennethR. Lutchen. Partitioning airway and lung tissue resistances inhumans: effects of bronchoconstriction. J. Appl.Physiol. 82(5): 1531-1541, 1997.The contributionof airway resistance(Raw) and tissue resistance(Rti) to totallung resistance(RL)during breathing in humans is poorly understood. We have recentlydeveloped a method for separating Rawand Rti from measurements ofRLand lung elastance (EL)alone. In nine healthy, awake subjects, we applied a broad-band optimalventilator waveform (OVW) with energy between 0.156 and 8.1 Hz thatsimultaneously provides tidal ventilation. In four of the subjects,data were acquired before and during a methacholine (MCh)-bronchoconstricted challenge. TheRLandELdata were first analyzed by using a model with a homogeneous airwaycompartment leading to a viscoelastic tissue compartment consisting oftissue damping and elastance parameters. Our OVW-based estimates ofRaw correlated well with estimatesobtained by using standard plethysmography and were responsive toMCh-induced bronchoconstriction. Our data suggest thatRti comprises ~40% of totalRLat typical breathing frequencies, which corresponds to ~60% ofintrathoracic RL. During mildMCh-induced bronchoconstriction, Rawaccounts for most of the increase inRL. At high doses of MCh, therewas a substantial increase in RLat all frequencies and inEL athigher frequencies. Our analysis showed that bothRaw andRti increase, but most of the increaseis due to Raw. The data also suggestthat widespread peripheral constriction causes airway wall shunting toproduce additional frequency dependence inEL.

  相似文献   

12.
A comparison of the dose-response behavior of canine airways and parenchyma   总被引:1,自引:0,他引:1  
We compared the histamine responsiveness of canine airways and parenchymal tissues in six anesthetized paralyzed open-chest mongrel dogs, partitioning total lung resistance (RL) into airway resistance (Raw) and tissue viscance (Vti). Pressure was measured during tidal breathing (frequency was 0.3 Hz) at the trachea and in three alveolar regions by use of alveolar capsules. Measurements were taken before and after the delivery of increasing concentrations of aerosolized histamine (0.1-30 mg/ml). We found that Vti accounted for 78 +/- 8% of RL under base-line conditions; this proportion remained relatively constant throughout the histamine concentration-response curve. There was a significant correlation between percent change in Vti and percent change in Raw at all levels of histamine-induced constriction (P less than 0.001). Moreover, the sensitivity of the tissues and airways (defined as the concentration of histamine required to double resistance) was remarkably similar. We conclude that, at this frequency of ventilation, Vti accounts for the major portion of RL both under base-line conditions and after histamine-induced constriction. Although increases in RL cannot be attributed solely to events occurring in the airways, the close correlation between changes in Raw and Vti and the similar sensitivities of the two support the use of indexes reflecting changes in airway caliber as an indicator of overall lung histamine responsiveness.  相似文献   

13.
Two groups of subjects were studied: one with (group 1: 5 healthy and 4 mildly asthmatic subjects) and another without (group 2:9 moderately and severely asthmatic subjects) a plateau of response to methacholine (MCh). We determined the effect of deep inhalation by comparing expiratory flows at 40% of forced vital capacity from maximal and partial flow-volume curves (MEF40M/P) and the quasi-static transpulmonary pressure-volume (Ptp-V) area. In group 1, MEF40M/P increased from 1.58 +/- 0.23 (SE) at baseline up to a maximum of 3.91 +/- 0.69 after MCh when forced expiratory volume in 1 s (FEV1) was decreased on plateau by 24 +/- 2%. The plateau of FEV1 was always paralleled by a plateau of MEF40M/P. In group 2, MEF40 M/P increased from 1.58 +/- 0.10 at baseline up to a maximum of 3.48 +/- 0.26 after MCh when FEV1 was decreased by 31 +/- 3% and then decreased to 2.42 +/- 0.24 when FEV1 was decreased by 46 +/- 2%. Ptp-V area was similar in the two groups at baseline yet was increased by 122 +/- 9% in group 2 and unchanged in group 1 at MCh end point. These findings suggest that the increased maximal response to MCh in asthmatic subjects is associated with an involvement of the lung periphery.  相似文献   

14.
Shen, X., S. J. Gunst, and R. S. Tepper. Effect oftidal volume and frequency on airway responsiveness in mechanically ventilated rabbits. J. Appl. Physiol.83(4): 1202-1208, 1997.We evaluated the effects of the rate andvolume of tidal ventilation on airway resistance (Raw) duringintravenous methacholine (MCh) challenge in mechanically ventilatedrabbits. Five rabbits were challenged at tidal volumes of 5, 10, and 20 ml/kg at a frequency of 15 breaths/min and also under static conditions(0 ml/kg tidal volume). Four rabbits were subjected to MCh challenge atfrequencies of 6 and 30 breaths/min with a tidal volume of 10 ml/kg andalso under static conditions. In both groups, the increase in Raw with MCh challenge was significantly greater under static conditions thanduring tidal ventilation at any frequency or volume. Increases in thevolume or frequency of tidal ventilation resulted in significant decreases in Raw in response to MCh. We conclude that tidal breathing suppresses airway responsiveness in rabbits in vivo. The suppression ofnarrowing in response to MCh increases as the magnitude of the volumeor the frequency of the tidal oscillations is increased. Our findingssuggest that the effect of lung volume changes on airway responsivenessin vivo is primarily related to the stretch of airway smooth muscle.

  相似文献   

15.
We examined the effects of elastase-induced emphysema on lung volumes, pulmonary mechanics, and airway responses to inhaled methacholine (MCh) of nine male Brown Norway rats. Measurements were made before and weekly for 4 wk after elastase in five rats. In four rats measurements were made before and at 3 wk after elastase; in these same animals the effects of changes in end-expiratory lung volume on the airway responses to MCh were evaluated before and after elastase. Airway responses were determined from peak pulmonary resistance (RL) calculated after 30-s aerosolizations of saline and doubling concentrations of MCh from 1 to 64 mg/ml. Porcine pancreatic elastase (1 IU/g) was administered intratracheally. Before elastase RL rose from 0.20 +/- 0.02 cmH2O.ml-1.s (mean +/- SE; n = 9) to 0.57 +/- 0.06 after MCh (64 mg/ml). A plateau was observed in the concentration-response curve. Static compliance and the maximum increase in RL (delta RL64) were significantly correlated (r = 0.799, P less than 0.01). Three weeks after elastase the maximal airway response to MCh was enhanced and no plateau was observed; delta RL64 was 0.78 +/- 0.07 cmH2O.ml-1.s, significantly higher than control delta RL64 (0.36 +/- 0.7, P less than 0.05). Before elastase, increase of end-expiratory lung volume to functional residual capacity + 1.56 ml (+/- 0.08 ml) significantly reduced RL at 64 mg MCh/ml from 0.62 +/- 0.05 cmH2O.ml-1.s to 0.50 +/- 0.03, P less than 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Previous studies have shown that lung challenge with smooth muscle agonists increases tissue viscance (Vti), which is the pressure drop between the alveolus and the pleura divided by the flow. Passive inflation also increases Vti. The purpose of the present study was to measure the changes in Vti during positive end-expiratory pressure- (PEEP) induced changes in lung volume and with a concentration-response curve to methacholine (MCh) in rabbits and to compare the effects of induced constriction vs. passive lung inflation on tissue mechanics. Measurements were made in 10 anesthetized open-chest mechanically ventilated New Zealand male rabbits exposed first to increasing levels of PEEP (3-12 cmH2O) and then to increasing concentrations of MCh aerosol (0.5-128 mg/ml). Lung elastance (EL), lung resistance (RL), and Vti were determined by adjusting the equation of motion to tracheal and alveolar pressures during tidal ventilation. Our results show that under baseline conditions, Vti accounted for a major proportion of RL; during both passive lung inflation and MCh challenge this proportion increased progressively. For the same level of change in EL, however, the increase in Vti was larger during MCh challenge than during passive inflation; i.e., the relationship between energy storage and energy dissipation or hysteresivity was dramatically altered. These results are consistent with a MCh-induced change in the intrinsic rheological properties of lung tissues unrelated to lung volume change per se. Lung tissue constriction is one possible explanation.  相似文献   

17.
To examine the effects of changes in lung volume on the magnitude of maximal bronchoconstriction, seven anesthetized, paralyzed, tracheostomized cats were challenged with aerosolized methacholine (MCh) and respiratory system resistance (Rss) was measured at different lung volumes using the interrupter technique. Analysis of the pressure changes following end-inspiratory interruptions allowed us to partition Rss into two quantities with the units of resistance, one (Rinit) corresponding to the resistance of the airways and the other (Rdif) reflecting the viscoelastic properties of the tissues of the respiratory system as well as gas redistribution following interruption of flow. Rinit and Rdif were used to construct concentration-response curves to MCh. Lung volume was increased by the application of 5, 10, and 15 cmH2O of positive end-expiratory pressure. The curve for Rinit reached a plateau in all cats, demonstrating a limit to the degree of MCh-induced bronchoconstriction. The mean value of Rinit (cmH2O.ml-1.s) for the group under control conditions was 0.011 and rose to 0.058 after maximal bronchoconstriction; the volume at which the flow was interrupted was 11.5 +/- 0.5 (SE) ml/kg above functional residual capacity (FRC). It then fell progressively to 0.029 at 21.2 +/- 0.8 ml/kg above FRC, 0.007 at 35.9 +/- 1.3 ml/kg above FRC, and 0.005 at 52.0 +/- 1.8 ml/kg above FRC. Cutting either the sympathetic or parasympathetic branches of the vagi had no significant effect on the lung volume-induced changes in MCh-induced bronchoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We assessed the difference between isovolumic maximal expiratory flows (Vmax) using maneuvers begun at mid-lung volumes, so-called partial expiratory flow-volume curves (P), vs. those begun at full inflation, so-called maximal expiratory flow-volume curves (M), in 10 asthmatic subjects before and following obstruction induced by isocapnic hyperpnea with cold air and before and after bronchodilation with a beta-agonist or antimuscarinic agent. Volume history effects were quantitated as an M-to-P ratio of Vmax at 30% vital capacity (M/P V30). Although M/P V30 was variable among patients at base line, there was a uniform increase in M/P V30 during constriction and a consistent decrease below base line after dilation. Blunting of induced obstruction with beta-agonists also diminished the increase in M/P V30. Antimuscarinics, despite equivalent bronchodilation, failed to alter the degree of obstruction induced by cold air or the increase in M/P V30 seen during obstruction. The level of airway tone, as indicated by specific resistance, related directly to the M/P V30. We conclude that the response of the asthmatic lung to a deep inhalation is relatively predictable when acute changes in airway tone are produced.  相似文献   

19.
We determined the dose-response curves to inhaled methacholine (MCh) in 16 asthmatic and 8 healthy subjects with prohibition of deep inhalations (DIs) and with 5 DIs taken after each MCh dose. Flow was measured on partial expiratory flow-volume curves at an absolute lung volume (plethysmographically determined) equal to 25% of control forced vital capacity (FVC). Airway inflammation was assessed in asthmatic subjects by analysis of induced sputum. Even when DIs were prohibited, the dose of MCh causing a 50% decrease in forced partial flow at 25% of control FVC (PD(50)MCh) was lower in asthmatic than in healthy subjects (P < 0.0001). In healthy but not in asthmatic subjects, repeated DIs significantly decreased the maximum response to MCh [from 90 +/- 4 to 62 +/- 8 (SD) % of control, P < 0.001], increased PD(50)MCh (P < 0.005), without affecting the dose causing 50% of maximal response. In asthmatic subjects, neither PD(50)MCh when DIs were prohibited nor changes in PD(50)MCh induced by DIs were significantly correlated with inflammatory cell numbers or percentages in sputum. We conclude that 1) even when DIs are prohibited, the responsiveness to MCh is greater in asthmatic than in healthy subjects; 2) repeated DIs reduce airway responsiveness in healthy but not in asthmatic subjects; and 3) neither airway hyperresponsiveness nor the inability of DIs to relax constricted airways in asthmatic subjects is related to the presence of inflammatory cells in the airways.  相似文献   

20.
We investigated whether an hypoxia-induced increase in airway resistance mediated by vagal efferents participates in the increase in end-expiratory lung volume (EELV) observed in hypoxia. We also assessed the contribution of the end-expiratory activity of the diaphragm (DE) to this phenomenon. Therefore, we measured EELV, total lung resistance (RL), dynamic lung compliance (Cdyn), DE, and minute ventilation (VE) in anesthetized rats during normoxia and hypoxia (10% O(2)) before (control) and after administration of atropine or saline. In the control group, hypoxia increased EELV, Cdyn, DE, and VE but slightly decreased RL. These changes were unaffected by saline or atropine, except that, in the atropine-treated rats, hypoxia did not change RL. These results suggest that 1) the increase in EELV observed in hypoxia cannot result from an increase in airway resistance; 2) the increased and persistent activity of inspiratory muscles during expiration is the most likely cause of the increase in EELV during hypoxia; and 3) the decrease in RL induced by hypoxia could result from the increase in lung volume including EELV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号