首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Messenger RNA is released preferentially from isolated rat liver nuclei in the presence of the ATP-generating system and cytosol. The release is suppressed by spermidine, while cytoplasmic RNase inhibitor was ineffective and PCMB like some other thiol-blocking agents inhibitory. Cytoplasmic SOD added to the system strongly suppressed RNA release. A similar effect could be obtained by anaerobiosis due to addition of SMP. In both cases the inhibition is reversed by cyanide.In contrast to normal liver where the generation of superoxide radicals takes place almost exclusively in microsomes and is coupled with the oxidation of NADPH, in mouse ascites hepatoma 22a the generation of superoxide radicals occurs mainly in the nuclear envelope and is coupled with the oxidation of both NADPH and NADH and inhibited by cyanide.Abbreviations PCMB p-Chloromercuri benzoate - SMP Submitochondrial particles - SOD Superoxide dismutase  相似文献   

2.
Inhibition of TnA translocation by TnA.   总被引:13,自引:6,他引:13       下载免费PDF全文
Plasmids already containing TnA showed decreased susceptibility to the translocation of a further TnA unit when compared with related plasmids that did not contain TnA. The translocation immunity imposed by TnA is exerted only on the plasmid of which it is part. It is suggested that this desensitization by a translocation unit is a general phenomenon that reduces the mutational effects of translocation.  相似文献   

3.
The translocation of AcPhe-tRNA in a purified system and that of peptidyl-tRNA in a crude, complete polypeptide synthesizing system containing endogenous E. coli polysomes are inhibited by antibiotics of the neomycin, kanamycin and gentamicin groups. The extent of inhibition varies with the different antibiotics, but it correlates well with the capacity of each antibiotic to inhibit polypeptide chain elongation. Thus, the inhibition of translocation by these antibiotics is clearly significant for their inhibitory effect on polypeptide synthesis.  相似文献   

4.
Inhibition by colchicine of fibrinogen translocation in hepatocytes   总被引:1,自引:2,他引:1       下载免费PDF全文
In the rat, 8 h after intraperitoneal administration of colchicine, fibrinogen (detected by antirat fibrinogen antibodies labeled with peroxidase) accumulated in the lumina of the rough endoplasmic reticulum of the hepatocytes; 16 and 24 h after colchicine administration, fibrinogen was detected, respectively, in the lumina of the smooth endoplasmic reticulum and in the Golgi apparatus. The effect of colchicine on the cytoplasmic translocation of fibrinogen could be due to a direct action of the drug on the membranes of the endoplasmic reticulum or could be the indirect result of the disruptive action of the drug on the microtubules.  相似文献   

5.
6.
7.
8.
Inhibition of RNA Polymerase by Streptolydigin   总被引:1,自引:0,他引:1  
TWO antibiotics inhibit RNA synthesis by interacting directly with RNA polymerase. The rifamycin series1–3 inhibit before RNA chain initiation and are without apparent effect during polymerization. Streptolydigin, however, inhibits initiation and chain elongation4–9. Using the d(A-T)-directed reaction as a model system10, we will show that streptolydigin stabilizes the polymerase-template interaction.  相似文献   

9.
Sodium inhibits in a dose-related fashion the translocation of calcium from an aqueous milieu into an organic phase containing the divalent-cation ionophore A23187. This inhibitory effect is reproduced by other monovalent cations, modulated by the nature of the anion in the sodium halide, and inversely related to the absolute amount of calcium translocated. The inhibitory effect cannot be attributed to a change in osmolarity or ionic strength, to sequestration of the ionophoretic molecule at the interface between the aqueous and organic phases, or to translocation of sodium or chloride. These findings indicate that sodium may directly affect the handling of calcium by ionophoretic systems specifically mediating the transport of divalent cations.  相似文献   

10.
11.
Our laboratory has developed methods for transient state kinetic analysis of human RNA polymerase II elongation. In these studies, multiple conformations of the RNA polymerase II elongation complex were revealed by their distinct elongation potential and differing dependence on nucleoside triphosphate substrate. Among these are conformations that appear to correspond to different translocation states of the DNA template and RNA-DNA hybrid. Using alpha-amanitin as a dynamic probe of the RNA polymerase II mechanism, we show that the most highly poised conformation of the elongation complex, which we interpreted previously as the posttranslocated state, is selectively resistant to inhibition with alpha-amanitin. Because initially resistant elongation complexes form only a single phosphodiester bond before being rendered inactive in the following bond addition cycle, alpha-amanitin inhibits elongation at each translocation step.  相似文献   

12.
13.
M K Samet 《Life sciences》1985,37(3):225-233
The ability of 2-chloroadenosine (2Cl Ado) to modulate lymphocyte function was examined in culture and in vivo. Mitogenic stimulation of B cell DNA synthesis was antagonized by 2Cl Ado while adenosine produced both stimulations and inhibitions. In culture, 2Cl Ado was found to suppress antibody production to sheep erythrocytes (SRBC) regardless of whether the nucleoside was added at the initiation of culture or 48 hours after sensitization. Inhibiting adenosine deaminase (ADA) did not affect the response to 2Cl Ado, and 1-homocysteine thiolactone was found to potentiate the inhibition suggesting formation of S-adenosylhomocysteine. Similar responses were found with adenosine provided ADA was inhibited. When 2Cl Ado was administered to mice 3-4 days after SRBC, a concentration-dependent decrease in antibody producing cells was observed. These data suggest that nucleosides can inhibit antibody production by inhibiting transmethylation reactions. 2Cl Ado appears to be an effective immunosuppressant without concomitant cytotoxicity both in culture and in vivo.  相似文献   

14.
15.
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism in eukaryotes, which is believed to function as a defence against viruses and transposons. Since its discovery, RNAi has been developed into a widely used technique for generating genetic knock-outs and for studying gene function by reverse genetics. Additionally, inhibition of virus replication by means of induced RNAi has now been reported for numerous viruses, including several important human pathogens such as human immunodeficiency virus type 1, hepatitis C virus, hepatitis B virus, dengue virus, poliovirus and influenza virus A. In this review, we will summarize the current data on RNAi-mediated inhibition of virus replication and discuss the possibilities for the development of RNAi-based antiviral therapeutics.  相似文献   

16.
17.
Inhibition of gammaherpesvirus replication by RNA interference   总被引:14,自引:0,他引:14       下载免费PDF全文
Jia Q  Sun R 《Journal of virology》2003,77(5):3301-3306
RNA interference (RNAi) is a conserved mechanism in which double-stranded, small interfering RNAs (siRNAs) trigger a sequence-specific gene-silencing process. Here we describe the inhibition of murine herpesvirus 68 replication by siRNAs targeted to sequences encoding Rta, an immediate-early protein known as an initiator of the lytic viral gene expression program, and open reading frame 45 (ORF 45), a conserved viral protein. Our results suggest that RNAi can block gammaherpesvirus replication and ORF 45 is required for efficient viral production.  相似文献   

18.
Inhibition of retroviral pathogenesis by RNA interference   总被引:26,自引:0,他引:26  
BACKGROUND: RNA interference (RNAi) is a newly discovered cellular defense system that is known to suppress replication of genomic parasites in model organisms. It has been widely conjectured that RNAi may also serve as an antiviral system in vertebrates. RESULTS: Retroviral infection could be initiated by electroporation of cloned Rous sarcoma virus (RSV) proviral DNA into the developing chick neural tube. Coelectroporation of proviral DNA and short double-stranded RNAs matching sequences of avain retroviruses, which were designed to induce RNAi against RSV, inhibited viral replication. Replication of RSV after electroporation resulted in disruption of embryonic development and early death, but this, too, could be suppressed by RNAi against the RSV genome. RNAi could also inhibit the growth of RSV and HIV in cell culture. Analysis of the step of the retroviral life cycle that is inhibited by RNAi revealed that it primarily prevented accumulation of the viral RNAs synthesized late during infection. RNA genomes introduced in viral particles early during infection were less sensitive. CONCLUSIONS: RNAi can block retroviral infection in vertebrates. The tissue electroporation method described here should allow RNAi to be used widely to study gene function and control of infection in vertebrate animals.  相似文献   

19.
20.
The activity of peptidyl-tRNALys-CpCp2'dA was measured in an in vitro poly(A)-dependent polypeptide synthesizing system derived from Escherichia coli. It has already been shown that Lys-tRNALys-CpCp2'dA is active as an acceptor and Ac2-Lys-tRNALys-Cp2'dA can donate its peptidyl residue but that the overall poly(A)-dependent synthesis of polylysine does not take place with Lys-tRNALys-CpCp2'dA [Wagner, T., Cramer, F., & Sprinzl, M. (1982) Biochemistry 21, 1521-1529]. This is due to the efficient inhibition of the EF-G-dependent translocation of the peptidyl-tRNA CpCp2'dA from the ribosomal A to the ribosomal P site. In addition, the EF-G-dependent release of the deacylated tRNALys-CpCp2'dA from the ribosomes is also inhibited. The action of the elongation factor G or some other ribosomal component participating in the translocation process requires the presence of the 2'-hydroxyl group on the terminal adenosine of tRNA. If this hydroxyl group is not present on the tRNA, the ribosomes remain locked in their pretranslocational state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号