首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteolytic activation of prophenoloxidase (proPO) is an integral part of the insect immune system against pathogen and parasite infection. This reaction is mediated by a proPO-activating proteinase (PAP) and its cofactor in the tobacco hornworm, Manduca sexta (Proc. Natl. Acad. Sci. USA 95 (1998) 12220; J. Biol. Chem. 278 (2003) 3552; Insect Biochem. Mol. Biol. 33 (2003) 1049). The cofactor consists of two serine proteinase homologs (SPHs), which associate with immulectin-2, a calcium-dependent lectin that binds to lipopolysaccharide (Insect Biochem. Mol. Biol. 33 (2003) 197). In order to understand the auxiliary effect of SPH-1 and SPH-2 in proPO activation, we started to investigate the molecular interactions among proPO, PAP-3, and the proteinase-like proteins. M. sexta SPH-1 and SPH-2 were purified from hemolymph of prepupae by hydroxylapatite, gel filtration, lectin-affinity, and ion exchange chromatography. They existed as non-covalent oligomers with an average molecular mass of about 790 kDa. MALDI-TOF mass fingerprint analysis revealed a new cleavage site in SPH-1 before Asp85. The PAP cofactor did not significantly alter Michaelis constant (KM) or kcat of PAP-3 towards a synthetic substrate, acetyl-Ile-Glu-Ala-Arg-p-nitroanilide, but greatly enhanced proPO activation by PAP-3. The apparent KM for proPO was determined to be about 9.4 microg/ml, close to its estimated concentration in larval hemolymph. In the presence of excess proPO and a set amount of PAP-3, increasing levels of phenoloxidase (PO) activity were detected as more SPHs were added. Half of the maximum proPO activation occurred when the molar ratio of PAP-3 to SPH was 1:1.4. Gel filtration experiments suggested that proPO, PAP-3, and the cofactor formed a ternary complex.  相似文献   

2.
In insects, the prophenoloxidase activation system is a defense mechanism against parasites and pathogens. Recognition of parasites or pathogens by pattern recognition receptors triggers activation of a serine proteinase cascade, leading to activation of prophenoloxidase-activating proteinase (PAP). PAP converts inactive prophenoloxidase (proPO) to active phenoloxidase (PO), which then catalyzes oxidation of phenolic compounds that can polymerize to form melanin. Because quinone intermediates and melanin are toxic to both hosts and pathogens, activation of proPO must be tightly regulated and localized. We report here purification and cDNA cloning of serine proteinase homologs (SPHs) from the tobacco hornworm, Manduca sexta, which interact with PAP-1 in proPO activation. Two SPHs were co-purified from plasma of M. sexta larvae with immulectin-2, a C-type lectin that binds to bacterial lipopolysaccharide. They contain an amino-terminal clip domain connected to a carboxyl-terminal serine proteinase-like domain. PAP-1 alone cannot efficiently activate proPO, but a mixture of SPHs and PAP-1 was much more effective for proPO activation. Immulectin-2, proPO and PAP-1 in hemolymph bound to the immobilized recombinant proteinase-like domain of SPH-1, indicating that a complex containing these proteins may exist in hemolymph. Since immulectin-2 is a pattern recognition receptor that binds to surface carbohydrates on pathogens, such a protein complex may localize activation of proPO on the surface of pathogens. SPH, which binds to immulectin-2, may function as a mediator to recruit proPO and PAP to the site of infection.  相似文献   

3.
Most parasitic wasps inject maternal factors into the host hemocoel to suppress the host immune system and ensure successful development of their progeny. Melanization is one of the insect defence mechanisms against intruding pathogens or parasites. We previously isolated from the venom of Cotesia rubecula a 50 kDa protein that blocked melanization in the hemolymph of its host, Pieris rapae [Insect Biochem. Mol. Biol. 33 (2003) 1017]. This protein, designated Vn50, is a serine proteinase homolog (SPH) containing an amino-terminal clip domain. In this work, we demonstrated that recombinant Vn50 bound P. rapae hemolymph components that were recognized by antisera to Tenebrio molitor prophenoloxidase (proPO) and Manduca sexta proPO-activating proteinase (PAP). Vn50 is stable in the host hemolymph-it remained intact for at least 72 h after parasitization. Using M. sexta as a model system, we found that Vn50 efficiently down-regulated proPO activation mediated by M. sexta PAP-1, SPH-1, and SPH-2. Vn50 did not inhibit active phenoloxidase (PO) or PAP-1, but it significantly reduced the proteolysis of proPO. If recombinant Vn50 binds P. rapae proPO and PAP (as suggested by the antibody reactions), it is likely that the molecular interactions among M. sexta proPO, PAP-1, and SPHs were impaired by this venom protein. A similar strategy might be employed by C. rubecula to negatively impact the proPO activation reaction in its natural host.  相似文献   

4.
Phenoloxidase (PO)-catalyzed reactions are crucial to the survival of insects after a pathogen or parasite infection. In Manduca sexta, active PO is generated from its precursor by a prophenoloxidase activating proteinase (PAP) in the presence of non-catalytic serine proteinase homologs (SPHs). The PAP and SPHs, located at the ends of a branched proteinase cascade, also require limited proteolysis to become functional. While the processing enzyme of M. sexta proPAP-2 and proPAP-3 is known, we are now investigating the proteolytic activation of proSPH-1 and proSPH-2. Here, we report the development of a series of Bac-to-Bac plasmid vectors for co-expression, secretion, and affinity purification of proSPH-1 and proSPH-2 from insect cells infected by one baculovirus. The purified proteins were characterized and used as substrates in a search for their activating enzymes in plasma of the larvae injected with microorganisms. Proteolytic processing occurred after the proSPHs had been incubated with hydroxyapatite or gel filtration column fractions. The cleaved proteins were active as a cofactor for proPO activation by PAP, and coexistence of SPH-1 and SPH-2 is essential for manifesting the auxiliary effect.  相似文献   

5.
A serine proteinase pathway in insect hemolymph leads to prophenoloxidase activation, an innate immune response against pathogen infection. In the tobacco hornworm Manduca sexta, recombinant hemolymph proteinase 14 precursor (pro-HP14) interacts with peptidoglycan, autoactivates, and initiates the proteinase cascade (Ji, C., Wang, Y., Guo, X., Hartson, S., and Jiang, H. (2004) J. Biol. Chem. 279, 34101-34106). Here, we report the purification and characterization of pro-HP14 from the hemolymph of bacteria-injected M. sexta larvae. The zymogen, consisting of a single polypeptide with a molecular mass of 68.5 kDa, is truncated at the amino terminus. It is converted to a two-chain active form in the presence of beta-1,3-glucan (a fungal cell wall component) and beta-1,3-glucan recognition protein-2. The 45-kDa heavy chain contains four low-density lipoprotein receptor A repeats, one Sushi domain, and one unique cysteine-rich region, whereas the 30-kDa light chain contains a serine proteinase domain, which was labeled by [(3)H]diisopropyl fluorophosphate. Pro-HP14 in the plasma strongly binds curdlan, zymosan, and yeast and interacts with peptidoglycan and Micrococcus luteus. Addition of autoactivated HP14 elevated phenoloxidase activity level in the larval plasma. Recombinant M. sexta serpin-1I reduced prophenoloxidase activation by inhibiting HP14. These data are consistent with the current model on initiation and regulation of the prophenoloxidase activation cascade upon recognition of pathogen-associated molecular patterns by specific pattern recognition proteins.  相似文献   

6.
In Manduca sexta, pathogen recognition triggers a branched serine proteinase cascade which generates active phenoloxidase (PO) in the presence of a proPO-activating proteinase (PAP) and two noncatalytic serine proteinase homologs (SPHs). PO then catalyzes the production of reactive compounds for microbe killing, wound healing, and melanin formation. In this study, we discovered that a minute amount of PAP1 (a final component of the proteinase pathway) caused a remarkable increase in PO activity in plasma from na?ve larvae, which was significantly higher than that from the same amounts of PAP1, proPO and SPHs incubated in vitro. The enhanced proPO activation concurred with the proteolytic activation of HP6, HP8, PAP1, SPH1, SPH2 and PO precursors. PAP1 cleaved proSPH2 to yield bands with mobility identical to SPH2 generated in vivo. PAP1 partially hydrolyzed proHP6 and proHP8 at a bond amino-terminal to the one cut in the PAP1-added plasma. PAP1 did not directly activate proPAP1. These results suggest that a self-reinforcing mechanism is built into the proPO activation system and other plasma proteins are required for cleaving proHP6 and proHP8 at the correct site to strengthen the defense response, perhaps in the early stage of the pathway activation.  相似文献   

7.
Some pathogens are capable of suppressing the melanization response of host insects, but the virulence factors responsible are largely unknown. The insect pathogen Microplitis demolitor bracovirus encodes the Egf family of small serine proteinase inhibitors. One family member, Egf1.0, was recently shown to suppress melanization of hemolymph in Manduca sexta in part by inhibiting the enzymatic activity of prophenoloxidase activating proteinase 3 (PAP3). However, other experiments suggested this viral protein suppresses melanization by more than one mechanism. Here we report that Egf1.0 inhibited the amidolytic activity of PAP1 and dose-dependently blocked processing of pro-PAP1 and pro-PAP3. Consistent with its PAP inhibitory activity, Egf1.0 also prevented processing of pro-phenoloxidase, serine proteinase homolog (SPH) 1, and SPH2. Isolation of Egf1.0-protein complexes from plasma indicated that Egf1.0 binds PAPs through its C-terminal repeat domain. Egf1.0 also potentially interacts with SPH2 and two other proteins, ferritin and gloverin, not previously associated with the phenoloxidase cascade. Overall, our results indicate that Egf1.0 is a dual activity PAP inhibitor that strongly suppresses the insect melanization response.  相似文献   

8.
Insect immune processes are mediated by programs of differential gene expression. To understand the molecular regulation of the immune response in the tobacco hornworm, Manduca sexta, the relevant subset of differentially expressed genes of interest must be identified, cloned and studied in detail. In this study, suppression subtractive hybridization, a PCR-based method for cDNA subtraction was performed to identify mRNAs from fat body of immunized larvae that are not present (or present at a low level) in control larvae. A subtracted cDNA library enriched in immune-inducible genes was constructed. Northern blot analysis of a sample of clones from our subtracted library indicated that >90% of the clones randomly selected from the subtracted library are immune inducible. Sequence analysis of 238 expressed sequence tags (ESTs) revealed that 120 ESTs, representing 54 distinct genes or gene families, had sequences identical or similar to previously characterized genes, some of which have been confirmed to be involved in innate immunity. These ESTs were categorized into seven groups, including pattern recognition proteins, serine proteinases and their inhibitors, and antimicrobial proteins. 112 ESTs, about 47.5% of the library, showed no significant similarity to any known genes. The sequences identified in this M. sexta library reflect our knowledge of insect immune strategies and may facilitate better understanding of insect immune responses.  相似文献   

9.
Manduca sexta microbe binding protein (MBP) is a member of the β-1,3-glucanase-related protein superfamily that includes Gram-negative bacteria-binding proteins (GNBPs), β-1,3-glucan recognition proteins (βGRPs), and β-1,3-glucanases. Our previous and current studies showed that the purified MBP from baculovirus-infected insect cells had stimulated prophenoloxidase (proPO) activation in the hemolymph of naïve and immune challenged larvae and that supplementation of the exogenous MBP and peptidoglycans (PGs) had caused synergistic increases in PO activity. To explore the underlying mechanism, we separated by SDS-PAGE naïve and induced larval plasma treated with buffer or MBP and detected on immunoblots changes in intensity and/or mobility of hemolymph (serine) proteases [HP14, HP21, HP6, HP8, proPO-activating proteases (PAPs) 1–3] and their homologs (SPH1, SPH2). In a nickel pull-down assay, we observed association of MBP with proHP14 (slightly), βGRP2, PG recognition protein-1 (PGRP1, indirectly), SPH1, SPH2, and proPO2. Further experiments indicated that diaminopimelic acid (DAP) or Lys PG, MBP, PGRP1, and proHP14 together trigger the proPO activation system in a Ca2+-dependent manner. Injection of the recombinant MBP into the 5th instar naïve larvae significantly induced the expression of several antimicrobial peptide genes, revealing a possible link between HP14 and immune signal transduction. Together, these results suggest that the recognition of Gram-negative or -positive bacteria via their PGs induces the melanization and Toll pathways in M. sexta.  相似文献   

10.
11.
Pattern recognition proteins in Manduca sexta plasma   总被引:10,自引:0,他引:10  
Recognition of nonself is the first step in mounting immune responses. In the innate immune systems of both vertebrates and arthropods, such recognition, termed pattern recognition, is mediated by a group of proteins, known as pattern recognition proteins or receptors. Different pattern recognition proteins recognize and bind to molecules (molecular patterns) present on the surface of microorganisms but absent from animals. These molecular patterns include microbial cell wall components such as bacterial lipopolysaccharide, lipoteichoic acid and peptidoglycan, and fungal beta-1,3-glucans. Binding of pattern recognition proteins to these molecular patterns triggers responses such as phagocytosis, nodule formation, encapsulation, activation of proteinase cascades, and synthesis of antimicrobial peptides. In this article, we describe four classes of pattern recognition proteins, hemolin, peptidoglycan recognition protein, beta-1,3-glucan recognition proteins, and immulectins (C-type lectins) involved in immune responses of the tobacco hornworm, Manduca sexta.  相似文献   

12.
13.
The biochemical basis of antimicrobial responses in Manduca sexta   总被引:1,自引:0,他引:1  
Innate immunity is essential for the wellbeing of vertebrates and invertebrates. Key components of this defense system include pattern recognition receptors that bind to infectious agents, extra-and intra-cellular proteins that relay signals, as well as molecules and cells that eliminate pathogens. We have been studying the defense mechanisms in a biochemical model insect, Manduca sexta. In this insect, hemolin, peptidoglycan recognition proteins, β-1,3-glucan recognition proteins and C-type lectins detect microbial surface molecules and induce immune responses such as phagocytosis, nodulation, encapsulation, melanization and production of antimicrobial peptides. Some of these responses are mediated by extracellular serine proteinase pathways. The proteolytic activation of prophenoloxidase (proPO) yields active phenoloxidase (PO) which catalyzes the formation of quinones and melanin for wound healing and microbe killing. M. sexta hemolymph proteinase 14 (HP 14) precursor interacts with peptidoglycan or β-1,3-glucan, autoactivates, and leads to the activation of other HPs including HP21 and proPO-activating proteinases (PAPs). PAP-1, -2 and -3 cut proPO to generate active PO in the presence of two serine proteinase homologs. Inhibition of the proteinases by serpins and association of the proteinase homologs with bacteria ensure a localized defense reaction. M. sexta HP1, HP6, HP8, HP17 and other proteinases may also participate in proPO activation or processing of spatzle and plasmatocyte spreading peptide.  相似文献   

14.
15.
16.
17.
Pattern recognition receptors, non-clonal immune proteins recognizing common microbial components, are critical for non-self recognition and the subsequent induction of Rel/NF-kappaB-controlled innate immune genes. However, the molecular identities of such receptors are still obscure. Here, we present data showing that Drosophila possesses at least three cDNAs encoding members of the Gram-negative bacteria-binding protein (DGNBP) family, one of which, DGNBP-1, has been characterized. Western blot, flow cytometric, and confocal laser microscopic analyses demonstrate that DGNBP-1 exists in both a soluble and a glycosylphosphatidylinositol-anchored membrane form in culture medium supernatant and on Drosophila immunocompetent cells, respectively. DGNBP-1 has a high affinity to microbial immune elicitors such as lipopolysaccharide (LPS) and beta-1,3-glucan whereas no binding affinity is detected with peptidoglycan, beta-1,4-glucan, or chitin. Importantly, the overexpression of DGNBP-1 in Drosophila immunocompetent cells enhances LPS- and beta-1,3-glucan-induced innate immune gene (NF-kappaB-dependent antimicrobial peptide gene) expression, which can be specifically blocked by pretreatment with anti-DGNBP-1 antibody. These results suggest that DGNBP-1 functions as a pattern recognition receptor for LPS from Gram-negative bacteria and beta-1, 3-glucan from fungi and plays an important role in non-self recognition and the subsequent immune signal transmission for the induction of antimicrobial peptide genes in the Drosophila innate immune system.  相似文献   

18.
19.
Expressed sequence tags (ESTs) analysis has been shown to be an efficient approach not only for gene discovery, but also for gene expression profiles performance. Two full-length enriched cDNA libraries were constructed from hemocytes and eyestalk of Portunus trituberculatus, respectively, and randomly sequenced to collect genomic information and identify genes involved in immune defense response. A total of 99 unigenes including 64 unigenes (6.00% of 1066 unigenes) in hemocytes library and 35 unigens (6.86% of 510 unigenes) in eyestalk library are identified to be immune genes. These genes are categorized into six classes, viz. antimicrobial peptides, redox proteins, melanization related proteins, chaperone proteins, clottable proteins and other immune factors. The content and category of immune genes in eyestalk library indicate eyestalk might have unrecognized role in crab immunity. Five immune genes containing multiple protein isoforms are identified and characterized, including anti-lipopolysaccharide factor (PtALF1-7), crustin (PtCrustin1-3), thioredoxin (PtTrx1-2), clip domain serine proteinase (PtcSP1-5) and kazal-type proteinase inhibitor (PtKPI1-4). Sequence alignment and phylogenetic analysis reveal PtALF1-7 contain two conserved cysteine residues and might be encoded by multiple genomic loci. PtCrustin1-3 share the consensus cysteine motif and are considered as Type I crustins. PtTrx1 possesses the critical structural cysteine residue C?3 of Trx-1, while PtTrx2 has the N-terminal mitochondrial translocation signal of Trx-2. Sequence analysis shows PtcSP1-5 contain one clip domain and one partial SP catalytic triad domain. PtKPI1-4 present one typical Kazal domain consisting of six conserved cysteine residues. Some protein isoforms are tissue-specific, which might suggest they have different origins and perform diverse functions. Except PtALF1-3 and PtCrustin1, the other isoformes in this study are firstly identified from P. trituberculatus. Especially, PtTrx2 are firstly identified from crustaceans. Our research will provide useful genomic information of P. trituberculatus and be helpful in understanding the molecular mechanisms of crab immunity.  相似文献   

20.
A serine proteinase cascade in insect hemolymph mediates prophenoloxidase activation, a defense mechanism against pathogen or parasite infection. Little is known regarding its initiating proteinase or how this enzyme is activated in response to invading microorganisms. We have isolated from the tobacco hornworm, Manduca sexta, a cDNA encoding a modular protein designated hemolymph proteinase 14 (HP14). It contains five low density lipoprotein receptor class A repeats, a Sushi domain, a unique Cys-rich region, and a proteinase-catalytic domain. The HP14 mRNA exists in fat body and hemocytes of the naive larvae, and its level increases significantly at 24 h after a bacterial challenge. We expressed proHP14 with a carboxyl-terminal hexahistidine tag in a baculovirus/insect cell system and detected the recombinant protein in two forms. The 87-kDa protein was primarily intracellular, whereas the 75-kDa form was present in the medium. Interaction with peptidoglycan resulted in proteolytic processing of the purified zymogen and generation of an amidase activity. Supplementation of hemolymph with proHP14 greatly enhanced prophenoloxidase activation in response to Micrococcus luteus. These data suggest that proHP14 is a pattern recognition protein that binds to bacteria and autoactivates and triggers the prophenoloxidase activation system in the hemolymph of M. sexta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号