首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

In addition to the pivotal roles of mast cells in allergic diseases, recent data suggest that mast cells play crucial roles in a variety of autoimmune responses. However, their roles in the pathogenesis of autoimmune skeletal muscle diseases have not been clarified despite their distribution in skeletal muscle. Therefore, the objective of this study is to determine the roles of mast cells in the development of autoimmune skeletal muscle diseases.

Methods

The number of mast cells in the affected muscle was examined in patients with dermatomyositis (DM) or polymyositis (PM). The susceptibility of mast cell-deficient WBB6F1-KitW/KitWv mice (W/Wv mice) to a murine model of polymyositis, C protein-induced myositis (CIM), was compared with that of wild-type (WT) mice. The effect of mast cell reconstitution with bone marrow-derived mast cells (BMMCs) on the susceptibility of W/Wv mice to CIM was also evaluated.

Results

The number of mast cells in the affected muscle increased in patients with PM as compared with patients with DM. W/Wv mice exhibited significantly reduced disease incidence and histological scores of CIM as compared with WT mice. The number of CD8+ T cells and macrophages in the skeletal muscles of CIM decreased in W/Wv mice compared with WT mice. Engraftment of BMMCs restored the incidence and histological scores of CIM in W/Wv mice. Vascular permeability in the skeletal muscle was elevated in WT mice but not in W/Wv mice upon CIM induction.

Conclusion

Mast cells are involved in the pathogenesis of inflammatory myopathy.  相似文献   

2.
Mast cells have emerged as critical intermediaries in the regulation of peripheral tolerance. Their presence in many precancerous lesions and tumors is associated with a poor prognosis, suggesting mast cells may promote an immunosuppressive tumor microenvironment and impede the development of protective anti-tumor immunity. The studies presented herein investigate how mast cells influence tumor-specific T cell responses. Male MB49 tumor cells, expressing HY antigens, induce anti-tumor IFN-??+ T cell responses in female mice. However, normal female mice cannot control progressive MB49 tumor growth. In contrast, mast cell-deficient c-KitWsh (Wsh) female mice controlled tumor growth and exhibited enhanced survival. The role of mast cells in curtailing the development of protective immunity was shown by increased mortality in mast cell-reconstituted Wsh mice with tumors. Confirmation of enhanced immunity in female Wsh mice was provided by (1) higher frequency of tumor-specific IFN-??+ CD8+ T cells in tumor-draining lymph nodes compared with WT females and (2) significantly increased ratios of intratumoral CD4+ and CD8+ T effector cells relative to tumor cells in Wsh mice compared to WT. These studies are the first to reveal that mast cells impair both regional adaptive immune responses and responses within the tumor microenvironment to diminish protective anti-tumor immunity.  相似文献   

3.
Mast cell activation and degranulation can result in the release of various chemical mediators, such as histamine and cytokines, which significantly affect sleep. Mast cells also exist in the central nervous system (CNS). Since up to 50% of histamine contents in the brain are from brain mast cells, mediators from brain mast cells may significantly influence sleep and other behaviors. In this study, we examined potential involvement of brain mast cells in sleep/wake regulations, focusing especially on the histaminergic system, using mast cell deficient (W/Wv) mice. No significant difference was found in the basal amount of sleep/wake between W/Wv mice and their wild-type littermates (WT), although W/Wv mice showed increased EEG delta power and attenuated rebound response after sleep deprivation. Intracerebroventricular injection of compound 48/80, a histamine releaser from mast cells, significantly increased histamine levels in the ventricular region and enhanced wakefulness in WT mice, while it had no effect in W/Wv mice. Injection of H1 antagonists (triprolidine and mepyramine) significantly increased the amounts of slow-wave sleep in WT mice, but not in W/Wv mice. Most strikingly, the food-seeking behavior observed in WT mice during food deprivation was completely abolished in W/Wv mice. W/Wv mice also exhibited higher anxiety and depression levels compared to WT mice. Our findings suggest that histamine released from brain mast cells is wake-promoting, and emphasizes the physiological and pharmacological importance of brain mast cells in the regulation of sleep and fundamental neurobehavior.  相似文献   

4.
Telokin phosphorylation by cyclic GMP-dependent protein kinase facilitates smooth muscle relaxation. In this study we examined the relaxation of gastric fundus smooth muscles from basal tone, or pre-contracted with KCl or carbachol (CCh), and the phosphorylation of telokin S13, myosin light chain (MLC) S19, MYPT1 T853, T696, and CPI-17 T38 in response to 8-Bromo-cGMP, the NO donor sodium nitroprusside (SNP), or nitrergic neurotransmission. We compared MLC phosphorylation and the contraction and relaxation responses of gastric fundus smooth muscles from telokin-/- mice and their wild-type littermates to KCl or CCh, and 8-Bromo-cGMP, SNP, or nitrergic neurotransmission, respectively. We compared the relaxation responses and telokin phosphorylation of gastric fundus smooth muscles from wild-type mice and W/W V mice which lack ICC-IM, to 8-Bromo-cGMP, SNP, or nitrergic neurotransmission. We found that telokin S13 is basally phosphorylated and that 8-Bromo-cGMP and SNP increased basal telokin phosphorylation. In muscles pre-contracted with KCl or CCh, 8-Bromo-cGMP and SNP had no effect on CPI-17 or MYPT1 phosphorylation, but increased telokin phosphorylation and reduced MLC phosphorylation. In telokin-/- gastric fundus smooth muscles, basal tone and constitutive MLC S19 phosphorylation were increased. Pre-contracted telokin-/- gastric fundus smooth muscles have increased contractile responses to KCl, CCh, or cholinergic neurotransmission and reduced relaxation to 8-Bromo-cGMP, SNP, and nitrergic neurotransmission. However, basal telokin phosphorylation was not increased when muscles were stimulated with lower concentrations of SNP or when the muscles were stimulated by nitrergic neurotransmission. SNP, but not nitrergic neurotransmission, increased telokin Ser13 phosphorylation in both wild-type and W/W V gastric fundus smooth muscles. Our findings indicate that telokin may play a role in attenuating constitutive MLC phosphorylation and provide an additional mechanism to augment gastric fundus mechanical responses to inhibitory neurotransmission.  相似文献   

5.
Interstitial cells of Cajal in the myenteric plexus region (ICC-MyP) form a network and generate basal pacemaking electrical activity. This morphological feature leads us to believe that these cells may be essential for the coordinating actions of gastrointestinal (GI) motility. We aim to propose a new method for functional assessment of ICC electrical activity and its network. Field potentials in a 1 mm2 region were simultaneously measured using an 8 × 8 microelectrode array (MEA) with a polar distance of 150 μm. The extracellular solution contained nifedipine and tetrodotoxin (TTX) to suppress activities of smooth muscle cells and neurons, respectively. We compared spatial electrical activities between ileal muscle preparations from wild-type (WT) and W/Wv mice. In spatio-temporal analyses, basal electrical activities were well synchronized with a propagation delay in WT, while those in W/Wv were small in amplitude and irregular in occurrence. The power spectrum in WT had a prominent peak corresponding to the frequency of ICC-MyP pacemaker activity, while that of W/Wv lacked it. Consequently, the ratio of the spectral power in 9.4–27.0 cpm was significantly larger in WT than in W/Wv. In conclusion, MEA measurements demonstrated that the network-forming ICC-MyP not only generates but also coordinates basal electrical activities. Disorders of GI motility based on morphological and functional impairments of ICC network with the range of several hundreds of micrometers, could be uncovered in future extensive studies.  相似文献   

6.
Kit immunohistochemistry and confocal reconstructions have provided detailed 3-dimensional images of ICC networks throughout the gastrointestinal (GI) tract. Morphological criteria have been used to establish that different classes of ICC exist within the GI tract and physiological studies have shown that these classes have distinct physiological roles in GI motility. Structural studies have focused predominately on rodent models and less information is available on whether similar classes of ICC exist within the GI tracts of humans or non-human primates. Using Kit immunohistochemistry and confocal imaging, we examined the 3-dimensional structure of ICC throughout the GI tract of cynomolgus monkeys. Whole or flat mounts and cryostat sections were used to examine ICC networks in the lower esophageal sphincter (LES), stomach, small intestine and colon. Anti-histamine antibodies were used to distinguish ICC from mast cells in the lamina propria. Kit labeling identified complex networks of ICC populations throughout the non-human primate GI tract that have structural characteristics similar to that described for ICC populations in rodent models. ICC-MY formed anastomosing networks in the myenteric plexus region. ICC-IM were interposed between smooth muscle cells in the stomach and colon and were concentrated within the deep muscular plexus (ICC-DMP) of the intestine. ICC-SEP were found in septal regions of the antrum that separated circular muscle bundles. Spindle-shaped histamine+ mast cells were found in the lamina propria throughout the GI tract. Since similar sub-populations of ICC exist within the GI tract of primates and rodents and the use of rodents to study the functional roles of different classes of ICC is warranted.  相似文献   

7.
The histamine contents were very low in the whole bodies of various types of mutant mice (Wv/Wv, Wv/W, W/W), in which the number of mast cells was decreased, but the L-histidine decarboxylase activities in these mutant mice were not much lower than in control wild type mice. These findings suggest the presence of high histidine decarboxylase activity in cells other than mast cells. Histidine decarboxylase in the whole body of mice was difficult to assay, because the enzyme was rapidly destroyed by proteases, but inclusion of a protease inhibitor, such as Leupeptin, Antipain, Chymostatin, or Pepstatin in the assay mixture permitted the accurate assay of histidine decarboxylase in crude extracts.  相似文献   

8.
Smooth and elaborate gut motility is based on cellular cooperation, including smooth muscle, enteric neurons and special interstitial cells acting as pacemaker cells. Therefore, spatial characterization of electric activity in tissues containing these electric excitable cells is required for a precise understanding of gut motility. Furthermore, tools to evaluate spatial electric activity in a small area would be useful for the investigation of model animals. We thus employed a microelectrode array (MEA) system to simultaneously measure a set of 8×8 field potentials in a square area of ∼1 mm2. The size of each recording electrode was 50×50 µm2, however the surface area was increased by fixing platinum black particles. The impedance of microelectrode was sufficiently low to apply a high-pass filter of 0.1 Hz. Mapping of spectral power, and auto-correlation and cross-correlation parameters characterized the spatial properties of spontaneous electric activity in the ileum of wild-type (WT) and W/Wv mice, the latter serving as a model of impaired network of pacemaking interstitial cells. Namely, electric activities measured varied in both size and cooperativity in W/Wv mice, despite the small area. In the ileum of WT mice, procedures suppressing the excitability of smooth muscle and neurons altered the propagation of spontaneous electric activity, but had little change in the period of oscillations. In conclusion, MEA with low impedance electrodes enables to measure slowly oscillating electric activity, and is useful to evaluate both histological and functional changes in the spatio-temporal property of gut electric activity.  相似文献   

9.
Nitric oxide (NO) relaxes the internal anal sphincter (IAS), but its enzymatic source(s) remains unknown; neuronal (nNOS) and endothelial (eNOS) NO synthase (NOS) isoforms could be involved. Also, interstitial cells of Cajal (ICC) may be involved in IAS relaxation. We studied the relative roles of nNOS, eNOS, and c-Kit-expressing ICC for IAS relaxation using genetic murine models. The basal IAS tone and the rectoanal inhibitory reflex (RAIR) were assessed in vivo by a purpose-built solid-state manometric probe and by using wild-type, nNOS-deficient (nNOS-/-), eNOS-deficient (eNOS-/-), and W/W(v) mice (lacking certain c-Kit-expressing ICC) with or without L-arginine or N(omega)-nitro-L-arginine methyl ester (L-NAME) treatment. Moreover, the basal tone and response to electrical field stimulation (EFS) were studied in organ bath using wild-type and mutant IAS. In vivo, the basal tone of eNOS-/- was higher and W/W(v) was lower than wild-type and nNOS-/- mice. L-arginine administered rectally, but not intravenously, decreased the basal tone in wild-type, nNOS-/-, and W/W(v) mice. However, neither L-arginine nor L-NAME affected basal tone in eNOS-/- mice. In vitro, L-arginine decreased basal tone in wild-type and nNOS-/- IAS but not in eNOS-/- or wild-type IAS without mucosa. The in vivo RAIR was intact in wild-type, eNOS-/-, and W/W(v) mice but absent in all nNOS-/- mice. EFS-induced IAS relaxation was also reduced in nNOS-/- IAS. Thus the basal IAS tone is largely controlled by eNOS in the mucosa, whereas the RAIR is controlled by nNOS. c-Kit-expressing ICC may not be essential for the RAIR.  相似文献   

10.
Summary Correlated responses in growth, body composition and efficiency were evaluated in lines of mice selected in the following ways: W+T i o , increased six-week body weight (WT6); W ° T i + , increased six-week tail length (TL6); W+T i , increased WT6 and decreased TL6; WT i + , decreased WT6 and increased TL6; M16, increased three-to six-week postweaning gain (PWG). Each of the first four selection treatments had two replicate lines (i = 1, 2) selected for 13 generations and the fifth treatment had one line selected for 30 generations. All lines were derived from a randombred ICR albino population which served as a control. Additional traits studied were three-week body weight and tail length, postweaning gain in tail length, percent body composition (ash, fat, moisture and protein) at six weeks of age, and three-to six-week feed consumption (CONS) and efficiency (EFF = PWG/CONS). Efficiency of body constituent gains (ash, fat, protein and caloric value) were determined by dividing each constituent by CONS. Relative to selection treatments, replicate variation in the array of traits was small and was primarily attributable to the effects of genetic drift; more frequent significant replicate differences among traits in W+T were associated with a replicate difference in cumulative selection differentials. Selection for different criteria involving WT6 and TL6 did not change the allometric relationship between tail length and body weight in the three-to six-week age interval. The significant divergence between W+T ° and W °T+ and between W+T and WT+ was as expected for WT6 and TL6. Significant asymmetry of selection response between W+T and WT+ for WT6 and TL6 was attributed to maternal effects. In agreement with theory, antagonistic index selection generally yielded smaller genetic responses than single trait selection. Positive correlated responses in CONS and EFF were found for M16 and W+T °. Significant correlated changes in CONS (positive in W °T+ and negative in WT+) were not accompanied by a significant change in EFF. In contrast, W+T evinced an increased EFF and no change in CONS. Percent fat increased significantly in W+T ° and M16. For W+To, W+T and M16, an increased energetic, fat and ash efficiency was observed, whereas M16 exhibited a positive increment in protein efficiency as well. Among selection treatment means, there were high positive correlations between WT6 and fat weight, protein weight, percent fat, CONS and EFF and a high negative correlation between WT6 and percent protein.Paper No.4916 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, N.C. 27607. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Experiment Station of the products named, nor criticism of similar ones not mentioned.  相似文献   

11.
The so-called interstitial cells of Cajal myenteric plexus (ICC-MP), interstitial cells of Cajal intramuscular (ICC-IM) and interstitial cells of Cajal deep muscular plexus (ICC-DMP) are the three types of ICC endowed within the intestinal muscle coat where they play different roles in gut motility. Studies on ICC ontogenesis showed ICC-MP in the human ileum by 7-9 weeks while information on ICC-IM and ICC-DMP in foetuses and newborns are not exhaustive. Functional recordings in the fasting state of prematurely born babies aged 28-37 weeks showed immature ileal motility. To gain more information on the time of appearance of the three ICC types in the human ileum and on the steps of the acquisition of mature features, we studied by c-kit immuno-histochemistry foetuses aged 17-27 weeks and newborns aged 36-41 weeks. In parallel, the maturative steps of enteric plexuses and muscle layers were immunohistochemically examined by using anti-neuron specific enolase (NSE), anti-S-100 and anti-alpha smooth muscle actin (alphaSMA) antibodies. The appearance and differentiation of all the ICC types were seen to occur in concomitance with those of the related nerve plexuses and muscle layers. ICC-MP appeared first, ICC-IM and ICC-DMP later and their differentiation was incomplete at birth. In conclusion, the ICC-MP, the intestinal pacemaker cells, in spite of absence of food intake, are already present during the foetal life and the ICC-IM appear by pre-term life, thus ensuring neurotransmission. The ICC-DMP and their related nerve plexus and smooth muscle cells, i.e. the intestinal stretch receptor, begin to differentiate at birth. These findings might help in predicting neonatal ileal motor behaviour and in interpreting the role of ICC abnormalities in the pathophysiology of intestinal motile disorders of neonates and young children.  相似文献   

12.
Interstitial cells of Cajal (ICC) are proposed to play a role in stretch activation of nerves and are under intense investigation for potential roles in enteric innervation. Most data to support such roles come from in vitro studies with muscle strips whereas data at the whole organ level are scarce. To obtain insight into the role of ICC in distention-induced motor patterns developing at the organ level, we studied distension-induced adaptive relaxation in the isolated whole stomach of wild-type and W/W(v) mice. A method was developed to assess gastric adaptive relaxation that gave quantitative information on rates of pressure development and maximal adaptive relaxation. Pressure development was monitored throughout infusion of 1 ml of solution over a 10-min period. The final intraluminal pressure was sensitive to blockade of nitric oxide synthase, in wild-type and W/W(v) mice to a similar extent, indicating NO-mediated relaxation in W/W(v) mice. Adaptive relaxation occurred between 0.2 and 0.5 ml of solution infusion; this reflex was abolished by TTX, was not sensitive to blockade of nitric oxide synthase, but was abolished by apamin, suggesting that ATP and not nitric oxide is the neurotransmitter responsible for this intrinsic reflex. Despite the absence of intramuscular ICC (ICC-IM), normal gastric adaptive relaxation occurred in the W/W(v) stomach. Because pressure development was significantly lower in W/W(v) mice compared with wild type in all the conditions studied, including in the presence of TTX, ICC-IM may play a role in development of myogenic tone. In conclusion, a mouse model was developed to assess the intrinsic component of gastric accommodation. This showed that ICC-IM are not essential for activation of intrinsic sensory nerves nor ATP-driven adaptive relaxation nor NO-mediated relaxation in the present model. ICC-IM may be involved in regulation of (distention-induced) myogenic tone.  相似文献   

13.
Characterization of the pleiotropic effects of ten new putative W locus mutations, nine co-isogenic and one highly congenic with the C57BL/6J strain, reveals a wide variety of influences upon pigmentation, blood formation and gametogenesis. None of the putative alleles, each of which is closely linked to Ph, a gene 0.1 cM from W, gave evidence of complementation with W39, a new allele previously shown to be allelic to Wv. All W*/W39 genotypes resulted in black-eyed-white anemics with reduced gametogenic activity.1 Homozygotes for seven of these mutations are lethal during perinatal life; anemic embryos have been identified in litters produced by intercross matings involving each of these alleles.—Phenotypes of mice of several mutant genotypes provide exceptions to the frequent observation that a double dose of dominant W alleles (e.g., W/Wv or W/W) results in defects of corresponding severity in each of the three affected tissues. One viable homozygote has little or no defect in blood formation, and another appears to have normal fertility. The phenotypes of these homozygotes support the conclusion that the three tissue defects are not dependent on each other for their appearance and probably do not result from a single physiological disturbance during the development of the embryo.—Although homozygosity for members of this series results in a wide range of phenotypes, the absence of complementation of any allele with W39, the close proximity of each mutant to Ph, and the fact that all alleles produce detectable (though sometimes marginal) defects in the same tissues affected by W and Wv, support the hypothesis that each new mutant gene is a W allele.  相似文献   

14.
Decreased neutrophils and megakaryocytes in anemic mice of genotype W/W   总被引:12,自引:0,他引:12  
The concentration of neutrophils and megakaryocytes was determined in the marrow of anemic mice of genotype W/Wv and their normal (+/+) litter mates. In all groups studied, the humerus of W/Wv mice contained significantly less neutrophils and megakaryocytes than did normal animals. Blood neutrophil concentration was less in all groups of W/Wv mice but in only one group which was the youngest group studied, did this value differ significantly from normal. The blood and marrow neutrophil response to endotoxin was similar in W/Wv and “+/+” animals. This suggests that the neutrophilic system of W/Wv mice responds to this stimulus in a relatively normal manner, much as their erythroid system responds to hypoxia, and androgens.  相似文献   

15.
Nitrergic neurotransmission to gut smooth muscle is impaired in W/W(v) mutant mice, which lack intramuscular interstitial cells of Cajal (ICC-IM). In addition, these mice have been reported to have smaller amplitude unitary potentials (UPs) and a more negative resting membrane potential (RMP) than control mice. These abnormalities have been attributed to absence of ICC-IM, but it remains possible that they are due to alterations at the level of the smooth muscle itself. Amphotericin-B-perforated patch-clamp recordings and Ca(2+) imaging (fura 2) were compared between freshly isolated single circular smooth muscle cells (CSM) from W/W(v) mutant and control mice lower esophageal sphincter (LES). There was no significant difference in seal resistance, capacitance, or input resistance in response to applied electrotonic current pulses between CSM cells from W/W(v) mutants and controls. Compared with control mice, RMP was more negative and UPs significantly smaller in CSM cells from mutant mice LES. Administration of caffeine induced an inward current in cells from both mutant and control mice, but the current density was significantly larger in cells from W/W(v) mutants. Membrane potential hyperpolarization induced by sodium nitroprusside was larger in cells from control mice vs. W/W(v) mutants. In addition, intracellular Ca(2+) transients induced by caffeine were significantly increased in cells from mutants. These findings indicate that LES CSM is abnormal in W/W(v) mutant mice. Thus some physiological functions attributed to ICC-IM based on experiments in smooth muscle of ICC deficient mice may need to be reconsidered.  相似文献   

16.
17.
Platelet-derived growth factor receptors (PDGFRs) belong to the same kinase group as c-Kit receptor tyrosine kinase that is specifically expressed in the interstitial cells of Cajal (ICC) in the gastrointestinal tract. In this study, we examined PDGFRα immunoreactivity in the murine gastrointestinal tract. PDGFRα-immunopositive (PDGFRα-ip) cells were observed in the musculature in all parts of the gastrointestinal tract. Although PDGFRα-ip cells were distinct from ICC and neurons, these cells were closely associated with intramuscular ICC and enteric nerve fibers. In the myenteric layer, PDGFRα-ip cells formed a cellular network with their ramified processes and encompassed myenteric ganglia. Numerous PDGFRα-ip cells were observed in the subserosal plane and showed a multipolar shape. The distribution pattern of the PDGFRα-ip cells in the ICC-deficient W v /W v mutant mice was the same as that in normal mice. PDGFRα-ip cells that showed intense immunoreactivity of SK3 potassium channel were considered to correspond to fibroblast-like cells or non-Cajal interstitial cells. Our observations suggest that PDGFRα-ip cells are basic cellular elements throughout the gastrointestinal musculature and are involved in the gastrointestinal functions.  相似文献   

18.
In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) 2 mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) 3 cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8+ T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B+ CD8+ T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a+ CD8+ T cells in the splenocytes of KO mice may affect the loss of CD8+ T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B+ CD8+ T-cells and CD107a+ CD8+ T-cells, thus transiently regulating in vivo anti-tumor immunity.  相似文献   

19.
Induced pluripotent stem (iPS) cells are generated by nuclear reprogramming of mature cells to a pluripotent state, and show biological properties of embryonic stem (ES) cells. The observation that human (h)ES cells generate hemoangiogenic progeny, defined by their high-level expression of KDR and low-level expression of PDGFRα (KDR+PDGFRαlo) via WNT and BMP signaling during 5-8 days of differentiation in a serum-free environment led us to address how hiPS cells give rise to hemoangiogenic progeny. In the presence of WNT3a, four hiPS cell lines derived from human skin fibroblasts commonly generated KDR+ and/or PDGFRα+ progeny by day 8 of differentiation. Endogenous BMP signaling was required for the WNT3a-directed upregulation of hemogenic cell development and the hemoangiogenic activity was confined in all cases to the KDR+PDGFRαlo fraction. Thus, iPS cells derived from human skin fibroblasts resemble hES cells in the generation of hematopoietic and endothelial cells in vitro.  相似文献   

20.
This study evaluated the essentiality of glial cell line-derived neurotrophic factor (GDNF) for in vitro culture of established mouse multipotent adult germline stem (maGS) cell lines by culturing them in the presence of GDNF, leukemia inhibitory factor (LIF) or both. We show that, in the absence of LIF, GDNF slows the proliferation of maGS cells and result in smaller sized colonies without any change in distribution of cells to different cell-cycle stages, expression of pluripotency genes and in vitro differentiation potential. Furthermore, in the absence of LIF, GDNF increased the expression of male germ-line genes and repopulated the empty seminiferous tubule of W/Wv mutant mouse without the formation of teratoma. GDNF also altered the genomic imprinting of Igf2, Peg1, and H19 genes but had no effect on DNA methylation of Oct4, Nanog and Stra8 genes. However, these effects of GDNF were masked in the presence of LIF. GDNF also did not interfere with the multipotency of maGS cells if they are cultured in the presence of LIF. In conclusion, our results suggest that, in the absence of LIF, GDNF alters the growth characteristics of maGS cells and partially impart them some of the germline stem (GS) cell-like characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号