首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Basophils play a key role in the development and effector phases of type 2 immune responses in both allergic diseases and helminth infections. This study shows that basophils become less responsive to IgE-mediated stimulation when mice are chronically infected with Litomosoides sigmodontis, a filarial nematode, and Schistosoma mansoni, a blood fluke. Although excretory/secretory products from microfilariae of L. sigmodontis suppressed basophils in vitro, transfer of microfilariae into mice did not result in basophil suppression. Rather, reduced basophil responsiveness, which required the presence of live helminths, was found to be dependent on host IL-10 and was accompanied by decreases in key IgE signaling molecules known to be downregulated by IL-10. Given the importance of basophils in the development of type 2 immune responses, these findings help explain the mechanism by which helminths protect against allergy and may have broad implications for understanding how helminth infections alter other disease states in people.  相似文献   

2.
The fine‐tuning of innate immune responses is an important aspect of host defenses against mycobacteria. MicroRNAs (miRNAs), small non‐coding RNAs, play essential roles in regulating multiple biological pathways including innate host defenses against various infections. Accumulating evidence shows that many miRNAs regulate the complex interplay between mycobacterial survival strategies and host innate immune pathways. Recent studies have contributed to understanding the role of miRNAs, the levels of which can be modulated by mycobacterial infection, in tuning host autophagy to control bacterial survival and innate effector function. Despite considerable efforts devoted to miRNA profiling over the past decade, further work is needed to improve the selection of appropriate biomarkers for tuberculosis. Understanding the roles and mechanisms of miRNAs in regulating innate immune signaling and autophagy may provide insights into new therapeutic modalities for host‐directed anti‐mycobacterial therapies. Here, we present a comprehensive review of the recent literature regarding miRNA profiling in tuberculosis and the roles of miRNAs in modulating innate immune responses and autophagy defenses against mycobacterial infections.  相似文献   

3.
Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2) is essential for transport of L-arginine (L-Arg) into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO) produced from inducible NO synthase (iNOS), or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/-) mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/-) mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/-) mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.  相似文献   

4.
NOD2/CARD15 mediates innate immune responses to mycobacterial infection. However, its role in the regulation of adaptive immunity has remained unknown. In this study, we examined host defense, T cell responses, and tissue pathology in two models of pulmonary mycobacterial infection, using wild-type and Nod2-deficient mice. During the early phase of aerosol infection with Mycobacterium tuberculosis, Nod2(-/-) mice had similar bacterial counts but reduced inflammatory response on histopathology at 4 and 8 wk postchallenge compared with wild-type animals. These findings were confirmed upon intratracheal infection of mice with attenuated Mycobacterium bovis bacillus Calmette-Guérin. Analysis of the lungs 4 wk after bacillus Calmette-Guérin infection demonstrated that Nod2(-/-) mice had decreased production of type 1 cytokines and reduced recruitment of CD8(+) and CD4(+) T cells. Ag-specific T cell responses in both the spleens and thoracic lymph nodes were diminished in Nod2(-/-) mice, indicating impaired adaptive antimycobacterial immunity. The immune regulatory role of NOD2 was not restricted to the lung since Nod2 disruption also led to reduced type 1 T cell activation following i.m. bacillus Calmette-Guérin infection. To determine the importance of diminished innate and adaptive immunity, we measured bacterial burden 6 mo after aerosol infection with M. tuberculosis and followed a second infected group for assessment of survival. Nod2(-/-) mice had a higher bacterial burden in the lungs 6 mo after infection and succumbed sooner than did wild-type controls. Taken together, these data indicate that NOD2 mediates resistance to mycobacterial infection via both innate and adaptive immunity.  相似文献   

5.
《Cell》2021,184(18):4713-4733.e22
  1. Download : Download high-res image (180KB)
  2. Download : Download full-size image
  相似文献   

6.
The murine gammaherpesvirus 68 (MHV-68 or gammaHV-68) model provides many advantages for studying virus-host interactions involved in gammaherpesvirus replication, including the role of cellular responses to infection. We examined the effects of cellular cyclooxygenase-2 (COX-2) and its by-product prostaglandin E(2) (PGE(2)) on MHV-68 gene expression and protein production following de novo infection of cultured cells. Western blot analyses revealed an induction of COX-2 protein in MHV-68-infected cells but not in cells infected with UV-irradiated MHV-68. Luciferase reporter assays demonstrated activation of the COX-2 promoter during MHV-68 replication. Two nonsteroidal anti-inflammatory drugs, a COX-2-specific inhibitor (NS-398) and a COX-1-COX-2 inhibitor (indomethacin), substantially reduced MHV-68 protein production in infected cells. Inhibition of viral protein expression and virion production by NS-398 was reversed in the presence of exogenous PGE(2). Global gene expression analysis using an MHV-68 DNA array showed that PGE(2) increased production of multiple viral gene products, and NS-398 inhibited production of many of the same genes. These studies suggest that COX-2 activity and PGE(2) production may play significant roles during MHV-68 de novo infection.  相似文献   

7.
First revealed in cancer studies, HURP (hepatoma up-regulated protein) is a cell cycle-associated gene with elevated expression in the G(2)/M phase. Cell culture studies have revealed that HURP is an essential factor required for spindle formation and chromosome congression during mitosis. However, the function of HURP in an in vivo context has not been explored. We generated a Hurp knock-out (Hurp(-/-)) mouse to investigate the role of HURP in development under normal physiological conditions. Hurp(-/-) mice develop normally and are indistinguishable from their wild-type littermates. Interestingly, breeding experiments revealed that Hurp(-/-) females are completely infertile, whereas the males reproduce normally. Ovulation, fertilization, and pre-implantation embryo development are normal; however, the Hurp(-/-) females are unable to form implantation sites due to an inability to undergo the decidual reaction. This is caused by a defect in endometrial stromal proliferation that leads to implantation failure. Additionally, HURP expression in the uterus coincides with the implantation stage and can be induced by estrogen treatment. Our results demonstrate for the first time that HURP affects endometrial stromal proliferation during implantation but is dispensable during normal development in mice; specifically, HURP has an essential function in uterine biology.  相似文献   

8.
9.
The selectin family of adhesion molecules mediates recruitment of immune cells to sites of inflammation which is critical for host resistance against infection. To characterize the role of selectins in host defence against Citrobacter rodentium infection, wild‐type (WT) mice and mice lacking P‐selectin glycoprotein ligand‐1 (PSGL‐1), P‐, E‐ and L‐selectin were infected using a Citrobacter‐induced colitis model. Infected mice lacking PSGL‐1 or P‐selectin showed a more pronounced morbidity associated with higher bacterial load, elevated IL‐12 p70, TNF‐α, IFN‐γ, MCP‐1 and IL‐6 production, more severe inflammation and surprisingly higher leucocyte infiltration in the guts than WT control. Recruitment of neutrophils and macrophages and caecal inflammation were drastically reduced in infected P‐selectin knockout mice receiving blocking monoclonal antibodies to ICAM‐1 or LFA‐1, indicating that these adhesion molecules may compensate for the loss of selectins in leucocyte recruitment. Furthermore, the adaptive immune response in mice lacking PSGL‐1 or P‐selectin remained functional since these infected mice were capable of eradicating the bacteria and being protected upon re‐challenge with C. rodentium. These data demonstrate a definitive phenotypic impairment of innate response in mice lacking PSGL‐1 or P‐selectin, and suggest that these adhesion molecules are important in host innate immune response against Citrobacter infection.  相似文献   

10.
Epidemiological, clinical, and experimental approaches have convincingly demonstrated that host resistance to infection with intracellular pathogens is significantly influenced by genetic polymorphisms. Using a mouse model of infection with virulent Mycobacterium tuberculosis (MTB), we have previously identified the sst1 locus as a genetic determinant of host resistance to tuberculosis. In this study we demonstrate that susceptibility to another intracellular pathogen, Listeria monocytogenes, is also influenced by the sst1 locus. The contribution of sst1 to anti-listerial immunity is much greater in immunodeficient scid mice, indicating that this locus controls innate immunity and becomes particularly important when adaptive immunity is significantly depressed. Similar to our previous observations using infection with MTB, the resistant allele of sst1 prevents formation of necrotic infectious lesions in vivo. We have shown that macrophages obtained from sst1-resistant congenic mice possess superior ability to kill L. monocytogenes in vitro. The bactericidal effect of sst1 is dependent on IFN-gamma activation and reactive oxygen radical production by activated macrophages after infection, but is independent of NO production. It is possible that there is a single gene that controls common IFN-dependent macrophage function, which is important in the pathogenesis of infections caused by both MTB and L. monocytogenes. However, host resistance to the two pathogens may be controlled by two different polymorphic genes encoded within the sst1 locus. The polymorphic gene(s) encoded within the sst1 locus that controls macrophage interactions with the two intracellular pathogens remains to be elucidated.  相似文献   

11.
Infection by influenza virus leads to respiratory failure characterized by acute lung injury associated with alveolar edema, necrotizing bronchiolitis, and excessive bleeding. Severe reactions to infection that lead to hospitalizations and/or death are frequently attributed to an exuberant host response, with excessive inflammation and damage to the epithelial cells that mediate respiratory gas exchange. The respiratory mucosa serves as a physical and chemical barrier to infection, producing mucus and surfactants, anti-viral mediators, and inflammatory cytokines. The airway epithelial cell layer also serves as the first and overwhelmingly primary target for virus infection and growth. This review details immune events during influenza infection from the viewpoint of the epithelial cells, secretory host defense mechanisms, cell death, and recovery.  相似文献   

12.
Natural killer (NK) cells are best known for their capacity to kill tumors but they are also critical in early innate responses to infection, especially herpesviruses. Recent studies indicate that NK cell receptors involved in tumor target specificity are also involved in responses to viral infections.  相似文献   

13.
Inflammatory periodontal diseases constitute one of the most common infections in humans, resulting in the destruction of the supporting structures of the dentition. Circulating neutrophils are an essential component of the human innate immune system. We observed that mice deficient for the major lysosomal-associated membrane protein-2 (LAMP-2) developed severe periodontitis early in life. This development was accompanied by a massive accumulation of bacterial plaque along the tooth surfaces, gingival inflammation, alveolar bone resorption, loss of connective tissue fiber attachment, apical migration of junctional epithelium, and pathological movement of the molars. The inflammatory lesions were dominated by polymorphonuclear leukocytes (PMNs) apparently being unable to efficiently clear bacterial pathogens. Systemic treatment of LAMP-2-deficient mice with antibiotics prevented the periodontal pathology. Isolated PMNs from LAMP-2-deficient mice showed an accumulation of autophagic vacuoles and a reduced bacterial killing capacity. Oxidative burst response was not altered in these cells. Latex bead and bacterial feeding experiments showed a reduced ability of the phagosomes to acquire an acidic pH and late endocytic markers, suggesting an impaired fusion of late endosomes-lysosomes with phagosomes. This study underlines the importance of LAMP-2 for the maturation of phagosomes in PMNs. It also underscores the requirement of lysosomal fusion events to provide sufficient antimicrobial activity in PMNs, which is needed to prevent periodontal disease.  相似文献   

14.
15.
Mice were exposed to starvation for 3 days. Body temperature and various parameters were examined. By starvation, body temperature, blood glucose and ACTH decreased, especially on days 2 and 3. The level of corticosterone increased at this time. On the other hand, the number of lymphocytes yielded by the liver, spleen and thymus decreased from day 1 to 3. The change of the distribution of lymphocyte subsets was unique because NK, NKT and extrathymic T cells were stress-resistant in the liver. Conventional T and B cells were stress-sensitive. Reflecting the increased proportion of NK and NKT cells, NK and NKT activities were augmented. The increased proportion of NKT cells produced both IFNγ and IL-4 (Th0-type profile). The proportion and some functions of granulocytes and macrophages increased on Day 1 after starvation. These results suggest that starvation has a potential to increase the functions of unconventional lymphocytes and myeloid cells.  相似文献   

16.
Neutropenia makes normal mice more susceptible to infection with spv (+) but not spv (-) Salmonella dublin. This shows the important role of polymorphonuclear leukocytes in resistance to Salmonella that can grow in host macrophages. Polymorphonuclear leukocytes, part of the innate immune system, kill Salmonella in a complement-dependent manner, and work in concert with macrophages.  相似文献   

17.
CD8(+) T cells are required to control acute viral replication in the CNS following infection with neurotropic coronavirus. By contrast, studies in B cell-deficient (muMT) mice revealed Abs as key effectors in suppressing virus recrudescence. The apparent loss of initial T cell-mediated immune control in the absence of B cells was investigated by comparing T cell populations in CNS mononuclear cells from infected muMT and wild-type mice. Following viral recrudescence in muMT mice, total CD8(+) T cell numbers were similar to those of wild-type mice that had cleared infectious virus; however, virus-specific T cells were reduced at least 3-fold by class I tetramer and IFN-gamma ELISPOT analysis. Although overall T cell recruitment into the CNS of muMT mice was not impaired, discrepancies in frequencies of virus-specific CD8(+) T cells were most severe during acute infection. Impaired ex vivo cytolytic activity of muMT CNS mononuclear cells, concomitant with reduced frequencies, implicated IFN-gamma as the primary anti viral factor early in infection. Reduced virus-specific CD8(+) T cell responses in the CNS coincided with poor peripheral expansion and diminished CD4(+) T cell help. Thus, in addition to the lack of Ab, limited CD8(+) and CD4(+) T cell responses in muMT mice contribute to the ultimate loss of control of CNS infection. Using a model of virus infection restricted to the CNS, the results provide novel evidence for a role of B cells in regulating T cell expansion and differentiation into effector cells.  相似文献   

18.
Cigarette smoke exposure is a major determinant of adverse lung health, but the molecular processes underlying its effects on inflammation and immunity remain poorly understood. Therefore, we sought to understand whether inflammatory and host defense determinants are affected during subchronic cigarette smoke exposure. Dose-response and time course studies of lungs from Balb/c mice exposed to smoke generated from 3, 6, and 9 cigarettes/day for 4 days showed macrophage- and S100A8-positive neutrophil-rich inflammation in lung tissue and bronchoalveolar lavage (BAL) fluid, matrix metalloproteinase (MMP) and serine protease induction, sustained NF-kappaB translocation and binding, and mucus cell induction but very small numbers of CD3+CD4+ and CD3+CD8+ lymphocytes. Cigarette smoke had no effect on phospho-Akt but caused a small upregulation of phospho-Erk1/2. Activator protein-1 and phospho-p38 MAPK could not be detected. Quantitative real-time PCR showed upregulation of chemokines (macrophage inflammatory protein-2, monocyte chemoattractant protein-1), inflammatory mediators (TNF-alpha, IL-1beta), leukocyte growth and survival factors [granulocyte-macrophage colony-stimulating factor, colony-stimulating factor (CSF)-1, CSF-1 receptor], transforming growth factor-beta, matrix-degrading MMP-9 and MMP-12, and Toll-like receptor (TLR)2, broadly mirroring NF-kappaB activation. No upregulation was observed for MMP-2, urokinase-type plasminogen activator, tissue-type plasminogen activator, and TLRs 3, 4, and 9. In mouse strain comparisons the rank order of susceptibility was Balb/c > C3H/HeJ > 129SvJ > C57BL6. Partition of responses into BAL macrophages vs. lavaged lung strongly implicated macrophages in the inflammatory responses. Strikingly, except for IL-10 and MMP-12, macrophage and lung gene profiles in Balb/c and C57BL/6 mice were very similar. The response pattern we observed suggests that subchronic cigarette smoke exposure may be useful to understand pathogenic mechanisms triggered by cigarette smoke in the lungs including inflammation and alteration of host defense.  相似文献   

19.
Pathogen-specific Ab production following infection with the gut-dwelling roundworm Heligmosomoides polygyrus is critical for protective immunity against reinfection. However, the factors required for productive T cell-B cell interactions in the context of a type 2-dominated immune response are not well defined. In the present study, we identify IL-21R signaling as a critical factor in driving pathogen-specific plasma cell differentiation and protective immunity against H. polygyrus in mice. We show that B cells require direct IL-21R signals to differentiate into CD138(+) plasma cells. In contrast, IL-21R signaling is dispensable for germinal center formation, isotype class switching, and Th2 and T follicular helper cell differentiation. Our studies demonstrate a selective role for IL-21 in plasma cell differentiation in the context of protective antiparasitic type 2 immunity.  相似文献   

20.

Background

In the intestine, the integrin CD103 is expressed on a subset of T regulatory (Treg) cells and a population of dendritic cells (DCs) that produce retinoic acid and promote immune homeostasis. However, the role of CD103 during intestinal helminth infection has not been tested.

Methodology/Principal Findings

We demonstrate that CD103 is dispensable for the development of protective immunity to the helminth parasite Trichuris muris. While we observed an increase in the frequency of CD103+ DCs in the lamina propria (LP) following acute high-dose infection with Trichuris, lack of CD103 had no effect on the frequency of CD11c+ DCs in the LP or mesenteric lymph nodes (mLN). CD103-deficient (CD103−/−) mice develop a slightly increased and earlier T cell response but resolve infection with similar kinetics to control mice. Similarly, low-dose chronic infection of CD103−/− mice with Trichuris resulted in no significant difference in immunity or parasite burden. Absence of CD103 also had no effect on the frequency of CD4+CD25+Foxp3+ Treg cells in the mLN or LP.

Conclusions/Significance

These results suggest that CD103 is dispensable for intestinal immunity during helminth infection. Furthermore, lack of CD103 had no effect on DC or Treg recruitment or retention within the large intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号