首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrobacterium tumefaciens-mediated genetic transformation involves transfer of a single-stranded T-DNA molecule (T strand) into the host cell, followed by its integration into the plant genome. The molecular mechanism of T-DNA integration, the culmination point of the entire transformation process, remains largely obscure. Here, we studied the roles of double-stranded breaks (DSBs) and double-stranded T-DNA intermediates in the integration process. We produced transgenic tobacco (Nicotiana tabacum) plants carrying an I-SceI endonuclease recognition site that, upon cleavage with I-SceI, generates DSB. Then, we retransformed these plants with two A. tumefaciens strains: one that allows transient expression of I-SceI to induce DSB and the other that carries a T-DNA with the I-SceI site and an integration selection marker. Integration of this latter T-DNA as full-length and I-SceI-digested molecules into the DSB site was analyzed in the resulting plants. Of 620 transgenic plants, 16 plants integrated T-DNA into DSB at their I-SceI sites; because DSB induces DNA repair, these results suggest that the invading T-DNA molecules target to the DNA repair sites for integration. Furthermore, of these 16 plants, seven plants incorporated T-DNA digested with I-SceI, which cleaves only double-stranded DNA. Thus, T-strand molecules can be converted into double-stranded intermediates before their integration into the DSB sites within the host cell genome.  相似文献   

2.
Agrobacterium tumefaciens causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T-DNA), derived from its tumour-inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts, Agrobacterium can deliver the T-DNA also to monocotyledonous plants, yeasts and fungi. The T-DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast Saccharomyces cerevisiae as a T-DNA recipient to demonstrate that the non-homologous end-joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T-DNA into the host genome. We discovered a minor pathway for T-DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T-DNA integration at the telomeric regions in the rad50, mre11 and xrs2 mutants was accompanied by gross chromosomal rearrangements.  相似文献   

3.
Genetic transformation mediated by Agrobacterium involves the transfer of a DNA molecule (T-DNA) from the bacterium to the eukaryotic host cell, and its integration into the host genome. Whereas extensive work has revealed the biological mechanisms governing the production, Agrobacterium-to-plant cell transport and nuclear import of the Agrobacterium T-DNA, the integration step remains largely unexplored, although several different T-DNA integration mechanisms have been suggested. Recent genetic and functional studies have revealed the importance of host proteins involved in DNA repair and maintenance for T-DNA integration. In this article, we review our understanding of the specific function of these proteins and propose a detailed model for integration.  相似文献   

4.
5.
Recently, it was shown that Agrobacterium tumefaciens can transfer transferred DNA (T-DNA) to Saccharomyces cerevisiae and that this T-DNA, when used as a replacement vector, is integrated via homologous recombination into the yeast genome. To test whether T-DNA can be a suitable substrate for integration via the gap repair mechanism as well, a model system developed for detection of homologous recombination events in plants was transferred to S. cerevisiae. Analysis of the yeast transformants revealed that an insertion type T-DNA vector can indeed be integrated via gap repair. Interestingly, the transformation frequency and the type of recombination events turned out to depend strongly on the orientation of the insert between the borders in such an insertion type T-DNA vector.  相似文献   

6.
7.

Agrobacterium tumefaciens is a unique pathogen with the ability to transfer a portion of its DNA, the T-DNA, to other organisms. The role of DNA repair genes in Agrobacterium transformation remains controversial. In order to understand if the host DNA repair response and dynamics was specific to bacterial factors such as Vir proteins, T-DNA, and oncogenes, we profiled the expression and promoter methylation of various DNA repair genes. These genes belonged to nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), homologous recombination (HR), and non-homologous end joining (NHEJ) pathways. We infected Arabidopsis plants with different Agrobacterium strains that lacked one or more of the above components so that the influence of the respective factors could be analysed. Our results revealed that the expression and promoter methylation of most DNA repair genes was affected by Agrobacterium, and it was specific to Vir proteins, T-DNA, oncogenes, or the mere presence of bacteria. In order to determine if Agrobacterium induced any transgenerational epigenetic effect on the DNA repair gene promoters, we studied the promoter methylation in two subsequent generations of the infected plants. Promoters of at least three genes, CEN2, RAD51, and LIG4 exhibited transgenerational memory in response to different bacterial factors. We believe that this is the first report of Agrobacterium-induced transgenerational epigenetic memory of DNA repair genes in plants. In addition, we show that Agrobacterium induces short-lived DNA strand breaks in Arabidopsis cells, irrespective of the presence or absence of virulence genes and T-DNA.

  相似文献   

8.
Agrobacterium is the only known bacterium capable of natural DNA transfer into a eukaryotic host. The genes transferred to host plants are contained on a T-DNA (transferred DNA) molecule, the transfer of which begins with its translocation, along with several effector proteins, from the bacterial cell to the host-cell cytoplasm. In the host cytoplasm, the T-complex is formed from a single-stranded copy of the T-DNA (T-strand) associated with several bacterial and host proteins and it is imported into the host nucleus via interactions with the host nuclear import machinery. Once inside the nucleus, the T-complex is most likely directed to the host genome by associating with histones. Finally, the chromatin-associated T-complex is uncoated from its escorting proteins prior to the conversion of the T-strand to a double-stranded form and its integration into the host genome.  相似文献   

9.
Genetic analysis of integration mediated by single T-DNA borders.   总被引:6,自引:2,他引:4       下载免费PDF全文
Transformation of plant cells by the T-DNA of the Ti plasmid of Agrobacterium tumefaciens depends in part upon a sequence adjacent to the right T-DNA end. When this sequence is absent, the T-DNA is almost avirulent; when it is present, DNA between it and the left T-DNA border region becomes integrated in plants. To investigate further this process of DNA transfer and integration, we introduced the right border region and the nopaline synthase (nos) gene of plasmid pTiC58 into a variety of new positions around Ti plasmids. The border region functioned when separated from the remainder of the T-DNA by almost 50 kilobases. It also worked when placed outside of the T-DNA region where there were no known left-border sequences with which to interact. Indeed, the nos gene could be transferred to plants even when no other Ti plasmid sequences were present on the same plasmid. These results may indicate that the sequence requirements for the left borders are not as stringent as those for the right borders. In addition, mutants with an extra copy of the right border region within their T-DNA were found to transfer or integrate only parts of the bacterial T-DNA region. It is possible that abnormally placed T-DNA borders interfere with the normal process of DNA transfer, integration, or both.  相似文献   

10.
Studies in several plants have shown that Agrobacterium tumefaciens T-DNA can integrate into plant chromosomal DNA by different mechanisms involving single-stranded (ss) or double-stranded (ds) forms. One mechanism requires sequence homology between plant target and ssT-DNA border sequences and another double-strand-break repair in which preexisting chromosomal DSBs “capture” dsT-DNAs. To learn more about T-DNA integration in Solanum lycopersicum we characterised 98 T-DNA/plant DNA junction sequences and show that T-DNA left border (LB) and right border transfer is much more variable than previously reported in Arabidopsis thaliana and Populus tremula. The analysis of seven plant target sequences showed that regions of homology between the T-DNA LB and plant chromosomal DNA plays an important role in T-DNA integration. One T-DNA insertion generated a target sequence duplication that resulted from nucleolytic processing of a LB/plant DNA heteroduplex that generated a DSB in plant chromosomal DNA. One broken end contained a captured T-DNA that served as a template for DNA repair synthesis. We propose that most T-DNA integrations in tomato require sequence homology between the ssT-DNA LB and plant target DNA which results in the generation of DSBs in plant chromosomal DNA.  相似文献   

11.
Stable transformation of plants by Agrobacterium T-DNAs requires that the transgene insert into the host chromosome. Although most of the Agrobacterium Ti plasmid genes required for this process have been studied in depth, few plant-encoded factors have been identified, although such factors, presumably DNA repair proteins, are widely presumed to exist. It has previously been suggested that the UVH1 gene product is required for stable T-DNA integration in Arabidopsis. Here we present evidence suggesting that uvh1 mutants are essentially wild type for T-DNA integration following inoculation via the vacuum-infiltration procedure.  相似文献   

12.
Agrobacterium tumefaciens delivers transferred DNA (T-DNA) into cells of plants and yeast. In plants, the T-DNA integrates at random positions into the genome by non-homologous recombination (NHR), whereas in yeast the T-DNA preferably integrates by homologous recombination (HR). Here we show that T-DNA integration by HR in yeast requires the recombination/repair proteins Rad51 and Rad52, but not Rad50, Mre11, Xrs2, Yku70 and Lig4. In the HR events a remarkable shift from insertion-type events to replacement events was observed in rad50, mre11 and xrs2 mutants. Residual integration in the rad51 mutant occurred predominantly by HR, whereas in the rad52 mutant integration occurred exclusively by NHR. Previously, we found that T-DNA integration by NHR is abolished in a yku70 mutant. Thus, Rad52 and Yku70 are the key regulators of T-DNA integration, channeling integration into either the HR or NHR pathway.  相似文献   

13.
14.
Pelczar P  Kalck V  Gomez D  Hohn B 《EMBO reports》2004,5(6):632-637
Agrobacterium tumefaciens-mediated plant transformation, a unique example of interkingdom gene transfer, has been widely adopted for the generation of transgenic plants. In vitro synthesized transferred DNA (T-DNA) complexes comprising single-stranded DNA and Agrobacterium virulence proteins VirD2 and VirE2, essential for plant transformation, were used to stably transfect HeLa cells. Both proteins positively influenced efficiency and precision of transgene integration by increasing overall transformation rates and by promoting full-length single-copy integration events. These findings demonstrate that the virulence proteins are sufficient for the integration of a T-DNA into a eukaryotic genome in the absence of other bacterial or plant factors. Synthetic T-DNA complexes are therefore unique protein:DNA delivery vectors with potential applications in the field of mammalian transgenesis.  相似文献   

15.
Agrobacterium, the only known organism capable of trans-kingdom DNA transfer, genetically transforms plants by transferring a segment of its DNA, T-DNA, into the nucleus of the host cell where it integrates into the plant genome. One of the central events in this genetic transformation process is nuclear import of the T-DNA molecule, which to a large degree is mediated by the bacterial virulence protein VirE2. VirE2 is distinguished by its nuclear targeting, which occurs only in plant but not in animal cells and is facilitated by the cellular VIP1 protein. The molecular mechanism of the VIP1 function is still unclear. Here, we used in vitro assays for nuclear import and quantification of protein-protein interactions to directly demonstrate formation of ternary complexes between VirE2, VIP1, and a component of the cellular nuclear import machinery, karyopherin alpha. Our results indicate that VIP1 functions as a molecular bridge between VirE2 and karyopherin alpha, allowing VirE2 to utilize the host cell nuclear import machinery even without being directly recognized by its components.  相似文献   

16.
Zheng  Si-Jun  Henken  Betty  Sofiari  Eri  Jacobsen  Evert  Krens  Frans A.  Kik  Chris 《Transgenic research》2001,10(3):237-245
Genomic DNA blot hybridization is traditionally used to demonstrate that, via genetic transformation, foreign genes are integrated into host genomes. However, in large genome species, such as Allium cepa L., the use of genomic DNA blot hybridization is pushed towards its limits, because a considerable quantity of DNA is needed to obtain enough genome copies for a clear hybridization pattern. Furthermore, genomic DNA blot hybridization is a time-consuming method. Adaptor ligation PCR (AL-PCR) of genomic DNA flanking T-DNA borders does not have these drawbacks and seems to be an adequate alternative to genomic DNA blot hybridization. Using AL-PCR we proved that T-DNA was integrated into the A. cepa genome of three transgenic lines transformed with Agrobacterium tumefaciens EHA105 (pCAMBIA 1301). The AL-PCR patterns obtained were specific and reproducible for a given transgenic line. The results showed that T-DNA integration took place and gave insight in the number of T-DNA copies present. Comparison of AL-PCR and previously obtained genomic DNA blot hybridization results pointed towards complex T-DNA integration patterns in some of the transgenic plants. After cloning and sequencing the AL-PCR products, the junctions between plant genomic DNA and the T-DNA insert could be analysed in great detail. For example it was shown that upon T-DNA integration a 66bp genomic sequence was deleted, and no filler DNA was inserted. Primers located within the left and right flanking genomic DNA in transgenic shallot plants were used to recover the target site of T-DNA integration.  相似文献   

17.
Retroviral DNA integration creates a discontinuity in the host cell chromatin and repair of this damage is required to complete the integration process. As integration and repair are essential for both viral replication and cell survival, it is possible that specific interactions with the host DNA repair systems might provide new cellular targets for human immunodeficiency virus therapy. Various genetic, pharmacological, and biochemical studies have provided strong evidence that postintegration DNA repair depends on components of the nonhomologous end-joining (NHEJ) pathway (DNA-PK (DNA-dependent protein kinase), Ku, Xrcc4, DNA ligase IV) and DNA damage-sensing pathways (Atr (Atm and Rad related), gamma-H2AX). Furthermore, deficiencies in NHEJ components result in susceptibility to apoptotic cell death following retroviral infection. Here, we review these findings and discuss other ways that retroviral DNA intermediates may interact with the host DNA damage signaling and repair pathways.  相似文献   

18.
The soil phytopathogen Agrobacterium has the unique ability to introduce single-stranded transferred DNA (T-DNA) from its tumor-inducing (Ti) plasmid into the host cell in a process known as horizontal gene transfer. Following its entry into the host cell cytoplasm, the T-DNA associates with the bacterial virulence (Vir) E2 protein, also exported from Agrobacterium, creating the T-DNA nucleoprotein complex (T-complex), which is then translocated into the nucleus where the DNA is integrated into the host chromatin. VirE2 protects the T-DNA from the host DNase activities, packages it into a helical filament and interacts with the host proteins, one of which, VIP1, facilitates nuclear import of the T-complex and its subsequent targeting to the host chromatin. Although the VirE2 and VIP1 protein components of the T-complex are vital for its intracellular transport, they must be removed to expose the T-DNA for integration. Our recent work demonstrated that this task is aided by an host defense-related F-box protein VBF that is induced by Agrobacterium infection and that recognizes and binds VIP1. VBF destabilizes VirE2 and VIP1 in yeast and plant cells, presumably via SCF-mediated proteasomal degradation. VBF expression in and export from the Agrobacterium cell lead to increased tumorigenesis. Here, we discuss these findings in the context of the “arms race” between Agrobacterium infectivity and plant defense.Key words: Arabidopsis, defense response, proteasomal degradation, bacterial infection, F-box proteinAgrobacterium infection of plants consists of a chain of events that usually starts in physically wounded tissue which produces Plant defense pathways subverted by Agrobacterium for genetic transformation small phenolic molecules, such as acetosyringone (AS).1 These phenolics serve as chemotactic agents and activating signals for the virulence (vir) gene region of the Ti plasmid.2,3 The vir gene products then process the T-DNA region of the Ti plasmid to a single-stranded DNA molecule that is exported with several Vir proteins into the host cell cytoplasm, in which it forms a the T-DNA nucleoprotein complex (T-complex).4,5 The plant responds to the coming invasion by expressing and activating several defense-related proteins,5 such as VBF6 and VIP1,7 aimed at suppressing the pathogen. However, the Agrobacterium has evolved mechanisms to take advantage of these host defense proteins.8 Some of the unique strategies for achieving this goal include (1) the use of VIP1 to bind the T-complex—via the VIP1 interaction with the T-DNA packaging protein VirE2,9,10—and assist its nuclear import7 and chromatin targeting,11 and (2) the use of VBF to mark VIP1 and its associated VirE2 for proteasomal degradation, presumably for uncoating the T-complex prior to the T-DNA integration into the plant genome.6,12 Here, we examine these subversion strategies in the context of “arms race” between Agrobacterium and plants.  相似文献   

19.
Transfer DNA(T-DNA) of Agrobacterium tumefaciens integration in the plant genome may lead to rearrangements of host plant chromosomal fragments,including inversions.However,there is very little information concerning the inversion.The present study reports a transgenic rice line selected from a T-DNA tagged population,which displays a semi-dwarf phenotype.Molecular analysis of this mutant indicated an insertion of two tandem copies of T-DNA into a locus on the rice genome in a head to tail mode.This inserti...  相似文献   

20.
Agrobacterium tumefaciens transfers T-DNA to plant cells, where it integrates into the genome, a property that is ensured by bacterial proteins VirD2 and VirE2. Under natural conditions, the protein MobA mobilizes its encoding plasmid, RSF1010, between different bacteria. A detailed analysis of MobA-mediated DNA mobilization by Agrobacterium to plants was performed. We compared the ability of MobA to transfer DNA and integrate it into the plant genome to that of pilot protein VirD2. MobA was found to be about 100-fold less efficient than VirD2 in conducting the DNA from the pTi plasmid to the plant cell nucleus. However, interestingly, DNAs transferred by the two proteins were integrated into the plant cell genome with similar efficiencies. In contrast, most of the integrated DNA copies transferred from a MobA-containing strain were truncated at the 5' end. Isolation and analysis of the most conserved 5' ends revealed patterns which resulted from the illegitimate integration of one transferred DNA within another. These complex integration patterns indicate a specific deficiency in MobA. The data conform to a model according to which efficiency of T-DNA integration is determined by plant enzymes and integrity is determined by bacterial proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号