首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous studies, we have identified a family of benzo[b]furan and benzo[b]thiophene derivatives linked to amino sugars (1-6) that are cytotoxic to a range of cancer cell lines. We describe here an exploration of the effect of structural modification of the amino group on one of the carbohydrate residues (4-amino-2,3,4,6-tetradeoxy-α-l-threo-hexopyranoside) on in vitro cytotoxicity. It has been found that maintaining at least one basic functional group around the C-4 position in the carbohydrate moiety is crucial for cytotoxicity. Furthermore, it appears that modifications around the C-4 position are limited by suitable hydrophilic/hydrophobic and/or ionic interactions, as well as steric constraints.  相似文献   

2.
In previous studies, we have identified a family of benzo[b]furan and benzo[b]thiophene derivatives linked to amino sugars (1-6) that are cytotoxic to a range of cancer cell lines. We describe here an exploration of the effect of structural modification of the amino group on one of the carbohydrate residues (4-amino-2,3,4,6-tetradeoxy-α-l-threo-hexopyranoside) on in vitro cytotoxicity. It has been found that maintaining at least one basic functional group around the C-4 position in the carbohydrate moiety is crucial for cytotoxicity. Furthermore, it appears that modifications around the C-4 position are limited by suitable hydrophilic/hydrophobic and/or ionic interactions, as well as steric constraints.  相似文献   

3.
A panel of glycosylated DNA binding agents (1-12) designed as functional anthracycline mimics was screened against three solid-tumor cell lines (MCF-7, HT 29 and HepG2/C3A) and three non-tumor cell lines by the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) cell viability assay. Several compounds showed better in vitro cytotoxicity and selectivity against MCF-7 cells than daunomycin and doxorubicin, two known DNA binding agents that are clinically-used anti-cancer agents. Although the selectivity for HT 29 and HepG2/C3A cells is generally lower, the IC50 values of some analogs against these two cancer cell lines were of the same magnitude as doxorubicin. Because there was no correlation between DNA binding affinity and cytotoxicity, and because topoisomerase (Topo) inhibition is another biological mechanism of action of most anthracycline drugs, Topo I/II inhibition assays with 1-12 were performed. Some of the compounds showed strong inhibition against these enzymes at 100 ??M, but there was no clear correlation between cytotoxicity and Topo I/II inhibition ability. Topo I/II inhibition mode assays were also performed, which verified that these compounds are topoisomerase suppressors, not poisons. Based on these results, we conclude that although DNA binding and/or topoisomerase inhibition may contribute to the observed cytotoxicity of 1-12, other mechanisms of action are also likely to be important.  相似文献   

4.
A series of new taxoids modified at the C-3', C-3'N, C-10, C-2 and C-7 positions has been designed, synthesized and evaluated for their potency to induce NO and TNF production by peritoneal murine macrophages (Mphi) from LPS-responsive C3H/HeN and LPS-hyporesponsive C3H/HeJ strains and human blood cells, and for their ability to inhibit the growth of Mphi-like cell lines J774.1 and J7.DEF3. The SAR-study has shown that the nature of the substituents at these positions have critical effect on the induction of TNF and NO production by Mphi. Positions C-3' and C-10 are the most flexible and an intriguing effect of the length of the substituents at the C-10 position is observed for taxoids bearing a straight chain alkanoyl moiety. An aromatic group at the C-3'N and C-2 positions is required for the activity, while only hydroxyl or acetyl substituents seem to be tolerated at the C-7 position. The natural stereochemistry in the C-13 isoserine side chain of the taxoids is an absolute requirement for macrophage activation. It has also been clearly shown that there is no correlation between the ability of the taxoids to induce TNF/NO production in C3H/HeN Mphi and the cytotoxicity against Mphi-like cells.  相似文献   

5.
A series of N-mustard-quinazoline conjugates was synthesized and subjected to antitumor studies. The N-mustard pharmacophore was attached at the C-6 of the 4-anilinoquinazolines via a urea linker. To study the structure-activity relationships of these conjugates, various substituents were introduced to the C-4 anilino moiety. The preliminary antitumor studies revealed that these agents exhibited significant antitumor activity in inhibiting various human tumor cell growths in vitro. Compounds 21b, 21g, and 21h were selected for further antitumor activity evaluation against human breast carcinoma MX-1 and prostate PC-3 xenograft in animal model. These agents showed 54-75% tumor suppression with low toxicity (5-7% body-weight changes). We also demonstrate that the newly synthesized compounds are able to induce DNA cross-linking through alkaline agarose gel shift assay and inhibited cell cycle arrest at G2/M phase.  相似文献   

6.
Novel 3-[4-(dimethylamino)phenyl]alkyl-2-oxindole analogs were synthesized by either of the following two pathways: (1) a sequence of Knoevenagel condensation of oxindole with (4-dimethylamino)cinnamaldehyde–hydrogenation, or (2) alkylation of oxindole dianion with [(4-dimethylamino)phenyl]alkyl halides. Subsequent alkylation at C-3 and/or N-1 of the oxindole skeleton by anion-based methods provided additional substituted derivatives for structure-activity relationship studies. Their effects on neuronal cell death induced by oxidative stress were evaluated by lactate dehydrogenase assay. Compounds with the alkyl chain length of 2–4 significantly suppressed the neuronal cell death. No significant change occurred in the activity by substitution with less-polar groups. The stereochemistry at C-3 of the oxindole core was also irrelevant for the neuroprotective effects of these compounds.  相似文献   

7.
Alterations of the C-12 and C-13 aromatic ring substituents of totarol (1) afforded the series of derivatives 2-14, and introduction of substituents at C-12 gave exclusively 2a-14a. The majority of these analogues were tested in vitro against the following organisms: beta-lactamase-positive and high level gentamycin-resistant Enterococcus faecalis, penicillin-resistant Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), and multiresistant Klebsiella pneumoniae. The results were evaluated in terms of structure-activity relationship which reveals that: (a) the phenolic moiety at C-13, in general, is essential for antibacterial activity at < 32 microg/mL against gram-positive species, and (b) derivatization at C-12 has an undesirable effect on the antibacterial activity of this class of compounds, while (c) all compounds tested are ineffective against the gram-negative Klebsiella pneumoniae.  相似文献   

8.
A group of (E)-1,3-diphenylprop-2-en-1-one derivatives (chalcones) possessing a MeSO(2)NH, or N(3), COX-2 pharmacophore at the para-position of the C-1 phenyl ring were synthesized using a facile stereoselective Claisen-Schmidt condensation reaction. In vitro COX-1/COX-2 structure-activity relationships were determined by varying the substituents on the C-3 phenyl ring (4-H, 4-Me, 4-F, and 4-OMe). Among the 1,3-diphenylprop-2-en-1-ones possessing a C-1 para-MeSO(2)NH COX-2 pharmacophore, (E)-1-(4-methanesulfonamidophenyl)-3-(4-methylphenyl)prop-2-en-1-one (7b) was identified as a selective COX-2 inhibitor (COX-2 IC(50)=1.0 microM; selectivity index >100) that was less potent than the reference drug rofecoxib (COX-2 IC(50)=0.50 microM; SI>200). The corresponding 1,3-diphenylprop-2-en-1-one analogue possessing a C-1 para-N(3) COX-2 pharmacophore, (E)-1-(4-azidophenyl)-3-(4-methylphenyl)prop-2-en-1-one (7f), exhibited potent and selective COX-2 inhibition (COX-1 IC(50)=22.2 microM; COX-2 IC(50)=0.3 microM; SI=60). A molecular modeling study where 7b and 7f were docked in the binding site of COX-2 showed that the p-MeSO(2)NH and N(3) substituents on the C-1 phenyl ring are oriented in the vicinity of the COX-2 secondary pocket (His90, Arg513, Phe518, and Val523). The structure-activity data acquired indicate that the propenone moiety constitutes a suitable scaffold to design new acyclic 1,3-diphenylprop-2-en-1-ones with selective COX-1 or COX-2 inhibitory activity.  相似文献   

9.
We have developed diamino-bistetrahydrofuran compounds (diamino-bisTHF) as new DNA binding molecules. Diamino-bisTHF (3:RR8) stabilized GC-rich duplex DNA with sequence specificity. DNA binding affinity increased as the alkyl chain was lengthened, indicating that the hydrophobic interaction is essential for DNA binding. It was also found that DNA binding affinity of the ligands depends on the stereochemistry of the amino group. In thermodynamic evaluation, diamino-bisTHF (3:RR8) showed a high affinity to the 12 bp duplex at a molar ratio of 1:1.  相似文献   

10.
We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (Ki within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (Ki > 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.  相似文献   

11.
We report the synthesis of an original series of oxoazabenzo[de]anthracenes conjugated to an amino acid: Ala, Phe, Pro, Lys, or Gly (4a-e, respectively). The compounds, derived from 1,8-dihydroxyanthracene-9,10-dione, were studied for DNA binding and cytotoxicity. Melting temperature, fluorescence quenching, and surface plasmon resonance methods all indicated that the lysine derivative 4d binds to DNA much more strongly that the Pro, Ala, and Gly conjugates whereas the Phe analogue showed the lowest DNA binding capacity. These compounds form intercalation complexes with DNA, as judged from electric linear dichroism and topoisomerase I-based DNA unwinding experiments. Preferential binding of 4d to defined sequences such as 5'-CTAAAGG and 5'-ATGC was evidenced by DNase I footprinting. This Lys conjugate was found to be over 20 times more cytotoxic to CEM human leukemia cells than the other conjugates, with an IC50 in the submicromolar range. A high antiproliferative activity, likely attributable to the enhanced DNA binding capacity, is maintained despite the incapacity of the compound to stabilize topoisomerase-DNA covalent complexes. The cell cycle effects of 4d consisted in an S phase accumulation of cells coupled with a pro-apoptotic action (appearance of hypodiploid sub-G1 cells) which were confirmed by measuring the inhibition of BrdU incorporation into DNA and labeling of phosphatidylserine residues with annexin V-FITC by means of flow cytometry. Altogether, the work provides interesting structure-activity relationships in the oxoazabenzo[de]anthracene-amino acid conjugate series and identifies the lysine derivative 4d as a promising candidate for further in vivo evaluation and drug design.  相似文献   

12.
Daunorubicin (DRB) and its two analogues containing a trisubstituted amidino group at the C-3′ position of the daunosamine moiety have been compared regarding their cytotoxic activity, cellular uptake, subcellular localization and DNA damaging properties. An analogue containing in the amidino group a morpholine moiety (DRBM) as well as an analogue with a hexamethyleneimine moiety (DRBH), tested against cultured L1210 cells, exhibited lower cytotoxicity then DRB. The decrease of cytotoxic activity was not related to cellular uptake and subcellular localization of drugs. Although all tested drugs were active in the induction of DNA breaks and DNA–protein crosslinks, they differed in the mechanism of induction of DNA lesions. DRB produced DNA breaks mediated solely by topoisomerase II, whereas DRBM and DRBH induced two types of DNA breaks by two separate processes. The first is related to the inhibition of topoisomerase II and the second presumably reflects a covalent binding of drug metabolites to DNA. It is hypothesized that the replacement of the primary amino group (–NH2) at the C-3′ position of the daunosamine moiety by a trisubstituted amidino group (–N=CH–NRR) may be a route to the synthesis of anthracycline derivatives with enhanced ability to form covalent adducts to DNA.  相似文献   

13.
The syntheses and in vitro evaluation of a new series of pyrido[2,3-d]pyrimidine-2,4-diones bearing substituents at C-3 and/or C-4 positions on the pyridine ring are described. Some of these compounds, especially 51 and 6f, were found to be potent phosphodiesterase 4 (PDE 4) inhibitors exhibiting improved ratio of PDE 4 inhibitory activity:rolipram binding assay (RBA).  相似文献   

14.
Development of C-20 modified betulinic acid derivatives as antitumor agents   总被引:6,自引:0,他引:6  
Chemical modifications were performed on C-20 position of betulinic acid for a structure-activity relationship study. The evaluation of the compounds using human colon carcinoma HCT-116, human prostate adenocarcinoma PC3, and human melanoma cell lines M14-MEL, SK-MEL-2, and UACC-257 did not show any selective cytotoxicity towards melanoma cells. The results from both MTT reduction assay and SRB staining assay were comparable that no remarkable differences in cytotoxicity profile of the compounds were noticed. The C-20 position was found to be sensitive to the size and the electron density of the substituents in retaining the cytotoxicity of betulinic acid and was found to be undesirable position to derivatize.  相似文献   

15.
Schiff bases prepared by the reactions of substituted amines with indole-/, pyrimidine-/, pyridine-/, and quinoline-aldehydes are made to undergo indium mediated allylation whereby a (substituted amine, allyl)methyl group has been introduced at C-3 of indole, C-5 of pyrimidine, and C-2 of pyridine and quinoline. Amongst the 16 compounds investigated for anti-cancer activities at 59 human tumor cell lines 3, 9-12, and 14 show appreciable activities. The structure-activity relationship studies point that the contribution of phenylglycinol moiety as a part of side chain at C-3 of indole and C-5 of pyrimidine seems to be crucial for exhibiting anti-cancer activities.  相似文献   

16.
We report in this paper that the binding of coumarin 6 (C6) to DNA can be tuned by complexing it with host structures, viz. β‐cyclodextrin (β‐CD) and C‐hexylpyrogallol‐4‐arene (C‐HPA). Because host molecules are used as carriers of small molecules onto target sites, the exposed part of the guest molecule needs to be found out, and the relationship between the host : guest ratio and the mode of binding with the target macromolecule, that is, the DNA needs to be analyzed, in order to comprehend the preferred binding moiety and tune the binding. In this paper, the formation of the inclusion complex of C6 with β‐CD and with C‐HPA is studied by UV‐visible, fluorescence, 2D rotating‐frame nuclear Overhauser effect correlation spectroscopy and diffusion‐ordered spectroscopy nuclear magnetic resonance spectra and molecular modeling. C6 forms a 1:1 complex with β‐CD and a 1:2 complex with C‐HPA. The studies on the protonation of C6 in the presence and the absence of the host molecules suggest that the chromone part of C6 is outside the β‐CD molecule, whereas it is fully covered by C‐HPA. The binding of C6 with calf thymus DNA (ctDNA) occurs through intercalation and hydrogen bonding, and the host–guest structures remain intact on binding with ctDNA. The oxygens of the C6 molecules are exposed when inside the host molecules and aid in the hydrogen bonding with DNA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A group of regioisomeric (E)-1,3-diarylprop-2-en-1-one derivatives possessing a COX-2 SO2Me pharmacophore at the para position of the C-1 or C-3 phenyl ring, in conjunction with a C-3 or C-1 phenyl (4-H) or substituted-phenyl ring (4-F, 4-OMe and 4-Me), were designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. These target (E)-1,3-diarylprop-2-en-1-ones were synthesized via a Claisen-Schmidt condensation reaction. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified (E)-1-(4-methanesulfonylphenyl)-3-(4-methylphenyl)prop-2-en-1-one (9f) as a potent COX-2 inhibitor (IC50=0.3 microM) with a high COX-2 selectivity index (SI=106) comparable to that of the reference drug rofecoxib (COX-2 IC50=0.5 microM; COX-2 SI>200). A molecular modeling study where 9f was docked in the binding site of COX-2 showed that the para-SO2Me substituent on the C-1 phenyl ring is oriented in the vicinity of the secondary COX-2 binding site near Val523. The structure-activity data acquired indicate that the propenone moiety constitutes a suitable scaffold to design novel acyclic 1,3-diarylprop-2-en-1-ones with selective COX-2 inhibitory activity.  相似文献   

18.
A series of anthracene l-rhamnopyranosides were designed and synthesized in a practical way and their cytotoxic activity was examined in vitro. Most compounds exhibited both potent cytotoxicity against several tumor cell lines and high DNA binding capacity. The preliminary results showed that subtle modifications of rhamnosyl moiety in anthracene rhamnosides with acetyl group had a selective toxicity for different tumor cells and the displacement of C-10 carbonyl group in emodin by acetylmethylene group was helpful to improve the inhibitory activity. Lipophilicity of the anthracene glycosides was not a crucial factor for cytotoxicity and most molecules with good cytotoxicity could inhibit the catalytic activity of Top2α.  相似文献   

19.
Topoisomerase II mediated double-strand breaks produced by anthracycline analogues were studied in SV40 DNA. The compounds included doxorubicin, daunorubicin, two doxorubicin stereoisomers (4'-epimer and beta-anomer), and five chromophore-modified derivatives, with a wide range of cytotoxic activity and DNA binding affinity. Cleavage of 32P-end-labeled DNA fragments was visualized by autoradiography of agarose and polyacrylamide gels. Structure-activity relationships indicated that alterations in the chromophore structure greatly affected drug action on topoisomerase II. In particular, removal of substituents on position 4 of the D ring resulted in more active inducers of cleavage with lower DNA binding affinity. The stereochemistry between the sugar and the chromophore was also essential for activity. All the active anthracyclines induced a single region of prominent cleavage in the entire SV40 DNA, which resulted from a cluster of sites between nucleotides 4237 and 4294. DNA cleavage intensity patterns exhibited differences among analogues and were also dependent upon drug concentration. Intensity at a given site depended on both stimulatory and suppressive effects depending upon drug concentration and DNA sequence. A good correlation was found between cytotoxicity and intensity of topoisomerase II mediated DNA breakage.  相似文献   

20.
Three platinum complexes in which substituted (7-OMe, 9-NH2; 7-F, 9-NH2; and 7-H, 9-NH(CH2)2OH) 9-aminoacridine-4-carboxamides were tethered to a platinum(II)diamine moiety were synthesised and characterised at the chemical and biological level. These variants showed a decrease in cytotoxicity, as measured by IC50 values in HeLa cells, when compared with the parent 7-H, 9-NH2 compound. The 7-F and 9-NH(CH2)2OH substituents gave rise to a small decrease in cytotoxicity, and the 7-OMe substituent resulted in a larger decrease in cytotoxicity. Their binding to purified pUC19 plasmid DNA was investigated and it was found that the addition of 7-F, 9-NH(CH2)2OH and especially the 7-OMe substituents, resulted in reduced DNA binding. This correlated well with the IC50 cytotoxicity values. However, the DNA sequence selectivity was unaffected by the addition of these moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号