首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The angiopoietins (ANGPT) are ligands for the endothelial cell (EC) receptor tyrosine kinase, Tie2. Angpt-1 is a Tie2 agonist that promotes vascular maturation and stabilization, whereas Angpt-2 is a partial agonist/antagonist involved in the initiation of postnatal angiogenesis. Therefore, we hypothesized that overexpression of Angpt-2 would be more effective than Angpt-1 for enhancing the perfusion recovery in the ischemic hindlimb. Perfusion recovery was markedly impaired in Tie2-deficient animals at day 35 in a model of chronic hindlimb ischemia. Injections of Angpt-2 or VEGFA plasmid at 7 days post femoral artery resection enhanced recovery and improved arteriogenesis as assessed by angiographic scores, whereas Angpt-1 or null plasmid had no effect. In addition, Angpt-2 together with VEGF resulted in greater improvement in perfusion and collateral vessel formation than VEGF alone. Similarly, conditional overexpression of Angpt-2 in mice improved ischemic limb blood flow recovery, while Angpt-1 overexpression was ineffective. These data from Tie2 heterozygote deficient mice demonstrate, for the first time, the importance of the Tie2 pathway in spontaneous neovascularization in response to chronic hindlimb ischemia. Moreover, they show that overexpression of the partial agonist, Angpt-2, but not Angpt-1, enhanced ischemic hind limb perfusion recovery and collateralization, suggesting that a coordinated sequence antagonist and agonist activity is required for effective therapeutic revascularization.  相似文献   

2.
Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is a potent vasodilator and signaling molecule that plays an essential role in vascular remodeling of collateral arteries and perfusion recovery in response to hindlimb ischemia. In ischemic conditions, decreased NO bioavailability was observed because of increased oxidative stress, decreased l-arginine and tetrahy-drobiopterin. This study tested the hypothesis that dietary cosupplementation with tetrahydrobiopterin (BH4), l-arginine, and vitamin C acts synergistically to decrease oxidative stress, increase nitric oxide and improve blood flow in response to acute hindlimb ischemia. Rats were fed normal chow, chow supplemented with BH4 or l-arginine (alone or in combination) or chow supplemented with BH4 + l-arginine + vitamin C for 1 wk before induction of unilateral hindlimb ischemia. Cosupplementation with BH4 + l-arginine resulted in greater eNOS expression, Ca2+-dependent NOS activity and NO concentration in gastrocnemius from the is-chemic hindlimb, as well as greater recovery of foot perfusion and more collateral artery enlargement than did rats receiving either agent separately. The addition of vitamin C to the BH4 + l-arginine regimen did further increase these dependent variables, although only the increase in eNOS expression reached statistical significances. In addition, rats given all three supplements demonstrated significantly less Ca2+-independent activity, less nitrotyrosine accumulation, greater glutathione:glutathione disulfide (GSH:GSSG) ratio and less gastrocnemius muscle necrosis, on both macroscopic and microscopic levels. In conclusion, cosupplementation with BH4 + l-arginine + vitamin C significantly increased vascular perfusion after hindlimb ischemia by increasing eNOS activity and reducing oxidative stress and tissue necrosis. Oral cosupplementation of l-arginine, BH4 and vitamin C holds promise as a biological therapy to induce collateral artery enlargement.  相似文献   

3.
Few studies have examined in detail the combined effects of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) gene delivery on collateral development. Here, we evaluated the potential synergism of naked DNA vectors encoding VEGF and bFGF using a skeletal-muscle based ex vivo angiogenesis assay and compared tissue perfusion and limb loss in a murine model of hindlimb ischemia. In the ex vivo angiogenesis assay, the VEGF+bFGF combination group had a larger capillary sprouting area than those of the LacZ, VEGF, and bFGF groups. Consistent with these results, regional blood flow recovery on day 14 was also highest in the VEGF+bFGF combination group, followed by the bFGF, VEGF, and LacZ groups. The limb loss frequency was 0% in the combination group, whereas the limb loss frequencies of the other groups were 7-29%. The ischemic muscles of the combination group revealed evidence of increased angiogenesis and arteriogenesis and the upregulated expression of genes that may be associated with arteriogenesis, such as those for cardiac ankyrin repeat protein, early growth response factor-1, and transforming growth factor-beta1. Our study has implications for the development of a combined gene therapy for the vascular occlusive diseases.  相似文献   

4.
Therapeutic angiogenesis can be induced by local implantation of bone marrow cells. We tried to enhance the angiogenic potential of this treatment by ex vivo hypoxia stimulation of bone marrow cells before implantation. Bone marrow cells were collected and cultured at 33 degrees C under 2% O(2)-5% CO(2)-90% N(2) (hypoxia) or 95% air-5% CO(2) (normoxia). Cells were also injected into the ischemic hindlimb of rats after 24 h of culture. Hypoxia culture increased the mRNA expression of vascular endothelial growth factor (VEGF), vascular endothelial (VE)-cadherin, and fetal liver kinase-1 (Flk-1) from 2.5- to fivefold in bone marrow cells. The levels of VEGF protein in the ischemic hindlimb were significantly higher 1 and 3 days after implantation with hypoxia-cultured cells than with normoxia-cultured or noncultured cells. The microvessel density and blood flow rate in the ischemic hindlimbs were also significantly (P < 0.001) higher 2 wk after implantation with hypoxia-cultured cells (89.7 +/- 5.5%) than with normoxia-cultured cells (67.0 +/- 9.6%) or noncultured cells (70.4 +/- 7.7%). Ex vivo hypoxia stimulation increased the VEGF mRNA expression and endothelial differentiation of bone marrow cells, which together contributed to improved therapeutic angiogenesis in the ischemic hindlimb after implantation.  相似文献   

5.

Background

Reactive oxygen species (ROS) play an important role in angiogenesis in endothelial cells (ECs) in vitro and neovascularization in vivo. However, little is known about the role of endogenous vascular hydrogen peroxide (H2O2) in postnatal neovascularization.

Methodology/Principal Findings

We used Tie2-driven endothelial specific catalase transgenic mice (Cat-Tg mice) and hindlimb ischemia model to address the role of endogenous H2O2 in ECs in post-ischemic neovascularization in vivo. Here we show that Cat-Tg mice exhibit significant reduction in intracellular H2O2 in ECs, blood flow recovery, capillary formation, collateral remodeling with larger extent of tissue damage after hindlimb ischemia, as compared to wild-type (WT) littermates. In the early stage of ischemia-induced angiogenesis, Cat-Tg mice show a morphologically disorganized microvasculature. Vascular sprouting and tube elongation are significantly impaired in isolated aorta from Cat-Tg mice. Furthermore, Cat-Tg mice show a decrease in myeloid cell recruitment after hindlimb ischemia. Mechanistically, Cat-Tg mice show significant decrease in eNOS phosphorylation at Ser1177 as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemotactic protein-1 (MCP-1) in ischemic muscles, which is required for inflammatory cell recruitment to the ischemic tissues. We also observed impaired endothelium-dependent relaxation in resistant vessels from Cat-Tg mice.

Conclusions/Significance

Endogenous ECs-derived H2O2 plays a critical role in reparative neovascularization in response to ischemia by upregulating adhesion molecules and activating eNOS in ECs. Redox-regulation in ECs is a potential therapeutic strategy for angiogenesis-dependent cardiovascular diseases.  相似文献   

6.
LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic factor VEGF.  相似文献   

7.
The therapeutic potential of placental growth factor (PlGF) and its receptor Flt1 in angiogenesis is poorly understood. Here, we report that PlGF stimulated angiogenesis and collateral growth in ischemic heart and limb with at least a comparable efficiency to vascular endothelial growth factor (VEGF). An antibody against Flt1 suppressed neovascularization in tumors and ischemic retina, and angiogenesis and inflammatory joint destruction in autoimmune arthritis. Anti-Flt1 also reduced atherosclerotic plaque growth and vulnerability, but the atheroprotective effect was not attributable to reduced plaque neovascularization. Inhibition of VEGF receptor Flk1 did not affect arthritis or atherosclerosis, indicating that inhibition of Flk1-driven angiogenesis alone was not sufficient to halt disease progression. The anti-inflammatory effects of anti-Flt1 were attributable to reduced mobilization of bone marrow-derived myeloid progenitors into the peripheral blood; impaired infiltration of Flt1-expressing leukocytes in inflamed tissues; and defective activation of myeloid cells. Thus, PlGF and Flt1 constitute potential candidates for therapeutic modulation of angiogenesis and inflammation.  相似文献   

8.
Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy   总被引:32,自引:0,他引:32  
Ischemic peripheral neuropathy is a frequent, irreversible complication of lower extremity vascular insufficiency. We investigated whether ischemic peripheral neuropathy could be prevented and/or reversed by gene transfer of an endothelial cell mitogen designed to promote therapeutic angiogenesis. Intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor (VEGF) simultaneously with induction of hindlimb ischemia in rabbits abrogated the substantial decrease in motor and sensory nerve parameters, and nerve function recovered promptly. When gene transfer was administered 10 days after induction of ischemia, nerve function was restored earlier and/or recovered faster than in untreated rabbits. These findings are due in part to enhanced hindlimb perfusion. In addition, however, the demonstration of functional VEGF receptor expression by Schwann cells indicates a direct effect of VEGF on neural integrity as well. These findings thus constitute a new paradigm for the treatment of ischemic peripheral neuropathy.  相似文献   

9.
The unique contributions of connexin (Cx)37 and Cx40, gap junction-forming proteins that are coexpressed in vascular endothelium, to the recovery of tissues from ischemic injury are unknown. We recently reported that Cx37-deficient (Cx37(-/-)) animals recovered ischemic hindlimb function more quickly and to a greater extent than wild-type (WT) or Cx40(-/-) animals, suggesting that Cx37 limits recovery in the WT animal. Here, we tested the hypothesis that enhanced angiogenesis, arteriogenesis, and vasculogenesis contribute to improved postischemic hindlimb recovery in Cx37(-/-) animals. Ischemia was induced unilaterally in the hindlimbs of WT or Cx37(-/-) mice (isoflurane anesthesia). Postsurgical limb appearance, use, and perfusion were documented during recovery, and the number (and size) of large and small vessels was determined. Native collateral number, predominantly established during embryonic development (vasculogenesis), was also determined in the pial circulation. Both microvascular density in the gastrocnemius of the ischemic limb (an angiogenic field) and the number and tortuosity of larger vessels in the gracilis vasculature (an arteriogenic field) were increased in Cx37(-/-) animals compared with WT animals. Cx37(-/-) mice also had an increased (vs. WT) number of collateral vessels in the pial circulation. These findings suggest that in Cx37(-/-) animals, improved recovery of the ischemic hindlimb involves enhanced vasculogenesis, resulting in increased numbers of collaterals in the hindlimb (and pial circulations) and more extensive collateral remodeling and angiogenesis. These results are consistent with Cx37 exerting a growth-suppressive effect in the vasculature that limits embryonic vasculogenesis as well as arteriogenic and angiogenic responses to ischemic injury in the adult animal.  相似文献   

10.
We previously clarified that heparin cofactor II (HCII), a serine proteinase inhibitor, exerts various protective actions on cardiovascular diseases in both experimental and clinical studies. In the present study, we aimed to clarify whether HCII participates in the regulation of angiogenesis. Male heterozygous HCII-deficient (HCII+/−) mice and male littermate wild-type (HCII+/+) mice at the age of 12–16 weeks were subjected to unilateral hindlimb ligation surgery. Laser speckle blood flow analysis showed that blood flow recovery in response to hindlimb ischemia was delayed in HCII+/− mice compared with that in HCII+/+ mice. Capillary number, arteriole number, and endothelial nitric-oxide synthase (eNOS), AMP-activated protein kinase (AMPK), and liver kinase B1 (LKB1) phosphorylation in ischemic muscles were decreased in HCII+/− mice. Human purified HCII (h-HCII) administration almost restored blood flow recovery, capillary density, and arteriole number as well as phosphorylation levels of eNOS, AMPK, and LKB1 in ischemic muscles of HCII+/− mice. Although treatment with h-HCII increased phosphorylation levels of eNOS, AMPK, and LKB1 in human aortic endothelial cells (HAECs), the h-HCII-induced eNOS phosphorylation was abolished by compound C, an AMPK inhibitor, and by AMPK siRNA. In a similar fashion, tube formation, proliferation, and migration of HAECs were also promoted by h-HCII treatment and were abrogated by pretreatment with compound C. HCII potentiates the activation of vascular endothelial cells and the promotion of angiogenesis in response to hindlimb ischemia via an AMPK-eNOS signaling pathway. These findings suggest that HCII is a novel therapeutic target for treatment of patients with peripheral circulation insufficiency.  相似文献   

11.
Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease.  相似文献   

12.
Shyu KG  Chang H  Isner JM 《Life sciences》2003,73(5):563-579
Vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1) are essential for vascular integrity and development. The purpose of the study was to test the hypothesis that Ang1 will promote angiogenic response to VEGF in the spontaneous Watanabe heritable hypercholesterolemic (WHHL) rabbit model of acute hindlimb ischemia. Immediately after the ligation of the external iliac artery and the excision of the common and superficial femoral artery in one female WHHL rabbit, 250 microg of phVEGF(165) (n = 8), 500 microg of pAng1* (n = 8), or 250 microg of phVEGF(165) plus 500 microg of pAng1* (n = 8) was injected intramuscularly into the ischemic hindlimb muscles. Gross appearance of ischemic limb, collateral vessel formation and limb perfusion were assessed 30 days after treatment. The incidence of ischemic limb necrosis was higher in the animals treated by phVEGF(165) or by pAng1* than in those treated by phVEGF(165) plus pAng1* (100%, 75% and 14.3%, respectively; P = 0.002). Animals in the combination therapy group had a significantly higher calf blood pressure ratio at day 30 (VEGF plus Ang1* = 0.84 +/- 0.06; VEGF = 0.54 +/- 0.01; Ang1* = 0.59 +/- 0.05; P < 0.01). A combination therapy of VEGF plus Ang*1 had a significantly higher (P < 0.01) angiographic score than either therapy alone. Capillary density (P < 0.05) and capillary/muscle fiber ratio (P < 0.01) of the combination therapy group were also significantly higher than that of either therapy alone. In conclusion, Ang1 can potentiate the angiogenic response to VEGF in the hyperlipidemic rabbit model of acute hindlimb ischemia. Intramuscular administration of cytokines on revascularization of the ischemic hindlimb model of hyperlipidemic rabbit is feasible.  相似文献   

13.
Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is a potent vasodilator and signaling molecule that plays essential roles in neovascularization. During limb ischemia, decreased NO bioavailability occurs secondary to increased oxidant stress, decreased l-arginine and tetrahydrobiopterin. This study tested the hypothesis that dietary cosupplementation with tetrahydrobiopterin (BH4), l-arginine and vitamin C acts synergistically to decrease oxidant stress, increase NO and thereby increase blood flow recovery after hindlimb ischemia. Rats were fed normal chow, chow supplemented with BH4 or l-arginine (alone or in combination) or chow supplemented with BH4 + l-arginine + vitamin C for 1 wk before induction of hindlimb ischemia. In the is-chemic hindlimb, cosupplementation with BH4 + l-arginine resulted in greater eNOS and phospho-eNOS (P-eNOS) expression, Ca2+-dependent NOS activity and NO concentration in the ischemic calf region (gastrocnemius), as well as greater NO concentration in the region of collateral arteries (gracilis). Rats receiving cosupplementation of BH4 + l-arginine led to greater recovery of foot perfusion and greater collateral enlargement than did rats receiving either agent separately. The addition of vitamin C to the BH4 + l-arginine regimen further increased these dependent variables. In addition, rats given all three supplements showed significantly less Ca2+-independent activity, less nitrotyrosine accumulation, greater glutathione (GSH)–to–glutathione disulfide (GSSG) ratio and less gastrocnemius muscle necrosis, on both macroscopic and microscopic levels. In conclusion, co-supplementation with BH4 + l-arginine + vitamin C significantly increased blood flow recovery after hindlimb ischemia by reducing oxidant stress, increasing NO bioavailability, enlarging collateral arteries and reducing muscle necrosis. Oral cosupplementation of BH4, l-arginine and vitamin C holds promise as a biological therapy to induce collateral artery enlargement.  相似文献   

14.
Aging population displays a much higher risk of peripheral arterial disease (PAD) possibly due to the higher susceptibility, poor prognosis, and fewer therapeutic options. This study was designed to examine the impact of combined multipotent adipose‐derived stromal cells (mADSCs) and sarpogrelate treatment on aging hindlimb ischemia and the mechanism of action involved. mADSCs (1.0 × 107) constitutively expressing enhanced green fluorescent protein (eGFP) or firefly luciferase (Fluc) reporter were engrafted into the hindlimb of aged Vegfr2‐luc transgenic or FVB/N mice subjected to unilateral femoral artery occlusion, followed by a further administration of sarpogrelate. Multimodality molecular imaging was employed to noninvasively evaluate mADSCs' survival and therapeutic efficacy against aging hindlimb ischemia. Aged Tg(Vegfr2‐luc) mice exhibited decreased inflammatory response, and downregulation of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor‐2 (VEGFR2) compared with young ones following hindlimb ischemia induction, resulting in angiogenesis insufficiency and decompensation for ischemia recovery. Engrafted mADSCs augmented inflammation‐induced angiogenesis to yield pro‐angiogenic/anti‐apoptotic effects partly via the VEGF/VEGFR2/mTOR/STAT3 pathway. Nonetheless, mADSCs displayed limited survival and efficacy following transplantation. Sarpogrelate treatment with mADSCs further upregulated mammalian target of rapamycin (mTOR)/STAT3 signal and modulated pro‐/anti‐inflammatory markers including IL‐1β/TNF‐α/IFN‐γ and IL‐6/IL‐10, which ultimately facilitated mADSCs' survival and therapeutic benefit in vivo. Sarpogrelate prevented mADSCs from hypoxia/reoxygenation‐induced cell death via a mTOR/STAT3‐dependent pathway in vitro. This study demonstrated a role of in vivo kinetics of VEGFR2 as a biomarker to evaluate cell‐derived therapeutic angiogenesis in aging. mADSCs and sarpogrelate synergistically restored impaired angiogenesis and inflammation modulatory capacity in aged hindlimb ischemic mice, indicating its therapeutic promise for PAD in the elderly.  相似文献   

15.
Recent reports have demonstrated that erythroid progenitor cells contain and secrete various angiogenic cytokines. Here, the impact of erythroid colony-forming cell (ECFC) implantation on therapeutic angiogenesis was investigated in murine models of hindlimb ischemia. During the in vitro differentiation, vascular endothelial growth factor (VEGF) secretion by ECFCs was observed from day 3 (burst-forming unit erythroid cells) to day 10 (erythroblasts). ECFCs from day 5 to day 7 (colony-forming unit erythroid cells) showed the highest VEGF productivity, and day 6 ECFCs were used for the experiments. ECFCs contained larger amounts of VEGF and fibroblast growth factor-2 (FGF-2) than peripheral blood mononuclear cells (PBMNCs). In tubule formation assays with human umbilical vein endothelial cells, ECFCs stimulated 1.5-fold more capillary growth than PBMNCs, and this effect was suppressed by antibodies against VEGF and FGF-2. Using an immunodeficient hindlimb ischemia model and laser-Doppler imaging, we evaluated the limb salvage rate and blood perfusion after intramuscular implantation of ECFCs. ECFC implantation increased both the salvage rate (38% vs. 0%, P < 0.05) and the blood perfusion (82.8% vs. 65.6%, P < 0.01). In addition, ECFCs implantation also significantly increased capillaries with recruitment of vascular smooth muscle cells and the capillary density was 1.6-fold higher than in the control group. Continuous production of human VEGF from ECFCs in the skeletal muscle was confirmed at least 7 days after the implantation. Implantation of ECFCs promoted angiogenesis in ischemic limbs by supplying angiogenic cytokines (VEGF and FGF-2), suggesting a possible novel strategy for therapeutic angiogenesis.  相似文献   

16.
Using Zucker fatty rats, a strain characterized by diabetes and hyperlipidemia, we investigated the diabetes- and hyperlipidemia-related impairment of bone marrow mononuclear cells (BMCs) for inducing therapeutic angiogenesis. BMCs from Zucker fatty and normal Zucker lean rats were collected and cultured. Although the characterization and cell survival of BMCs did not differ, the VEGF production, endothelial differentiation, and endothelial cell colony-forming potential of BMCs from Zucker fatty rats were significantly lower than those of BMCs from lean rats. By using an ischemic hindlimb model, we found that the native recovery of induced limb ischemia in the Zucker fatty rats was also significantly worse than that in the lean rats. Furthermore, the expression of 5-hydroxytryptamine (5-HT(2A)) receptors was obviously higher in the Zucker fatty rats than that in the lean rats and was enhanced after limb ischemia. Although the therapeutic potency was lower than with the implantation of BMCs from normal lean rats, the implantation of BMCs from fatty rats could also induce angiogenesis and increase blood flow significantly in the ischemic hindlimbs of Zucker fatty rats. Furthermore, the blood flow in the ischemic hindlimbs was increased by the administration of sarpogrelate, a selective 5-HT(2A)-receptor antagonist. Our results clearly show diabetes- and hyperlipidemia-related dysfunction and impaired potency for inducing angiogenesis of BMCs. However, the implantation of autologous BMCs into ischemic limbs of diabetic and hyperlipidemic rats has induced therapeutic angiogenesis effectively, and blood flow would be enhanced by the administration of a 5-HT(2A)-receptor antagonist.  相似文献   

17.
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by activating VEGF receptor-2 (VEGFR-2). The role of its homolog, placental growth factor (PlGF), remains unknown. Both VEGF and PlGF bind to VEGF receptor-1 (VEGFR-1), but it is unknown whether VEGFR-1, which exists as a soluble or a membrane-bound type, is an inert decoy or a signaling receptor for PlGF during angiogenesis. Here, we report that embryonic angiogenesis in mice was not affected by deficiency of PlGF (Pgf-/-). VEGF-B, another ligand of VEGFR-1, did not rescue development in Pgf-/- mice. However, loss of PlGF impaired angiogenesis, plasma extravasation and collateral growth during ischemia, inflammation, wound healing and cancer. Transplantation of wild-type bone marrow rescued the impaired angiogenesis and collateral growth in Pgf-/- mice, indicating that PlGF might have contributed to vessel growth in the adult by mobilizing bone-marrow-derived cells. The synergism between PlGF and VEGF was specific, as PlGF deficiency impaired the response to VEGF, but not to bFGF or histamine. VEGFR-1 was activated by PlGF, given that anti-VEGFR-1 antibodies and a Src-kinase inhibitor blocked the endothelial response to PlGF or VEGF/PlGF. By upregulating PlGF and the signaling subtype of VEGFR-1, endothelial cells amplify their responsiveness to VEGF during the 'angiogenic switch' in many pathological disorders.  相似文献   

18.
In skeletal muscles, angiogenesis can be induced by increases in wall shear stress. To identify molecules involved in the angiogenic process, a method based on the use of BS-1 lectin-coated magnetic beads was developed to isolate a cellular fraction enriched in microvascular endothelial cells which are directly exposed to wall shear stress. Using such cellular fractions from skeletal muscles of C57 mice in which angiogenesis was induced by administration with the alpha(1)-adrenergic antagonist prazosin, we found the concentration of vascular endothelial growth factor (VEGF) increased in correlation to the duration of the prazosin stimulus. In contrast, the angiopoietin-2/tie-2 system was not changed even after 4days of prazosin treatment. In neuronal nitric oxide synthase (nNOS) knockout mice, the VEGF concentration was also elevated after prazosin treatment but remained almost unchanged in endothelial nitric oxide synthase (eNOS) knockout mice. However, eNOS (and not nNOS) knockout mice expressed higher levels of VEGF under non-stimulated conditions as compared to C57 mice. These results suggest that VEGF produced in endothelial cells is involved in angiogenesis in skeletal muscles of mice responding to the administration of systemic vasodilators. NO derived from eNOS and nNOS may be an important regulator of the angiogenic response in skeletal muscles in vivo.  相似文献   

19.
Hypoxia inducible factor-1 alpha (HIF-1 alpha) is a key determinant of oxygen-dependent gene regulation in angiogenesis. HIF-1 alpha overexpression may be beneficial in cell therapy of hypoxia-induced pathophysiological processes, such as ischemic heart disease. To address this issue, human peripheral blood mononuclear cells (PBMNCs) were induced to differentiate into endothelial progenitor cells (EPCs), and then were transfected with either an HIF-1 alpha-expressing or a control vector and cultured under normoxia or hypoxia. Hypoxia-induced HIF-1 alpha mRNA and protein expression was increased after HIF-1 alpha transfection. This was accompanied by VEGF mRNA induction and increased VEGF secretion. Hypoxia-stimulated VEGF mRNA induction was significantly abrogated by HIF-1 alpha-specific siRNA. Functional studies showed that HIF-1 alpha overexpression further promoted hypoxia-induced EPC differentiation, proliferation and migration. The expressions of endothelial cell markers CD31, VEGFR2 (Flk-1) and eNOS as well as VEGF and NO secretions were also increased. Furthermore, in an in vivo model of hindlimb ischemia, HIF-1 alpha-transfected EPCs homed to the site of ischemia. A higher revascularization potential was also demonstrated by increased capillary density at the injury site. Our results revealed that endothelial progenitor cells ex vivo modification by hypoxia inducible factor-1 alpha gene transfection is feasible and may offer significant advantages in terms of EPC expansion and treatment efficacy.  相似文献   

20.
We have investigated the effect of benzo[a]pyrene (B[a]P), a carcinogen of tobacco smoke and an agonist for the aryl hydrocarbon receptor (AHR), on hypoxia-induced angiogenesis. Ischemia was induced by femoral artery ligation in wild-type and AHR-null mice, and the animals were subjected to oral administration of B[a]P (125 mg/kg) once a week. Exposure to B[a]P up-regulated the expression of metallothionein in the ischemic hindlimb and markedly inhibited ischemia-induced angiogenesis in wild-type mice. The amounts of interleukin-6 and of vascular endothelial growth factor (VEGF) mRNA in the ischemic hindlimb of wild-type mice were reduced by exposure to B[a]P. These various effects of B[a]P were markedly attenuated in AHR-null mice. Our observations suggest that the loss of the inhibitory effect of B[a]P on ischemia-induced angiogenesis apparent in AHR-null mice may be attributable to maintenance of interleukin-6 expression and consequent promotion of angiogenesis through up-regulation of VEGF expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号