首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have found that hydrogen (dihydrogen; H2) has beneficial lipid-lowering effects in high-fat diet-fed Syrian golden hamsters. The objective of this study was to characterize the effects of H2-rich water (0.9–1.0 l/day) on the content, composition, and biological activities of serum lipoproteins on 20 patients with potential metabolic syndrome. Serum analysis showed that consumption of H2-rich water for 10 weeks resulted in decreased serum total-cholesterol (TC) and LDL-cholesterol (LDL-C) levels. Western blot analysis revealed a marked decrease of apolipoprotein (apo)B100 and apoE in serum. In addition, we found H2 significantly improved HDL functionality assessed in four independent ways, namely, i) protection against LDL oxidation, ii) inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to endothelial cells, iii) stimulation of cholesterol efflux from macrophage foam cells, and iv) protection of endothelial cells from TNF-α-induced apoptosis. Further, we found consumption of H2-rich water resulted in an increase in antioxidant enzyme superoxide dismutase and a decrease in thiobarbituric acid-reactive substances in whole serum and LDL. In conclusion, supplementation with H2-rich water seems to decrease serum LDL-C and apoB levels, improve dyslipidemia-injured HDL functions, and reduce oxidative stress, and it may have a beneficial role in prevention of potential metabolic syndrome.  相似文献   

2.
The specifics of nascent HDL remodeling within the plasma compartment remain poorly understood. We developed an in vitro assay to monitor the lipid transfer between model nascent HDL (LpA-I) and plasma lipoproteins. Incubation of α-125I-LpA-I with plasma resulted in association of LpA-I with existing plasma HDL, whereas incubation with TD plasma or LDL resulted in conversion of α-125I-LpA-I to preβ-HDL. To further investigate the dynamics of lipid transfer, nascent LpA-I were labeled with cell-derived [3 H]cholesterol (UC) or [3H]phosphatidylcholine (PC) and incubated with plasma at 37°C. The majority of UC and PC were rapidly transferred to apolipoprotein B (apoB). Subsequently, UC was redistributed to HDL for esterification before being returned to apoB. The presence of a phospholipid transfer protein (PLTP) stimulator or purified PLTP promoted PC transfer to apoB. Conversely, PC transfer was abolished in plasma from PLTP−/− mice. Injection of 125I-LpA-I into rabbits resulted in a rapid size redistribution of 125I-LpA-I. The majority of [3H]UC from labeled r(HDL) was esterified in vivo within HDL, whereas a minority was found in LDL. These data suggest that apoB plays a major role in nascent HDL remodeling by accepting their lipids and donating UC to the LCAT reaction. The finding that nascent particles were depleted of their lipids and remodeled in the presence of plasma lipoproteins raises questions about their stability and subsequent interaction with LCAT.  相似文献   

3.
The hypothesis tested in this study was that cholesterol esterification by ACAT2 would increase cholesterol absorption efficiency by providing cholesteryl ester (CE) for incorporation into chylomicrons. The assumption was that absorption would be proportional to Acat2 gene dosage. Male ACAT2+/+, ACAT2+/−, and ACAT2−/− mice were fed a diet containing 20% of energy as palm oil with 0.2% (w/w) cholesterol. Cholesterol absorption efficiency was measured by fecal dual-isotope and thoracic lymph duct cannulation (TLDC) methods using [3H]sitosterol and [14C]cholesterol tracers. Excellent agreement among individual mice was found for cholesterol absorption measured by both techniques. Cholesterol absorption efficiency in ACAT2−/− mice was 16% compared with 46–47% in ACAT2+/+ and ACAT2+/− mice. Chylomicrons from ACAT2+/+ and ACAT2+/− mice carried ∼80% of total sterol mass as CE, whereas ACAT2−/− chylomicrons carried >90% of sterol mass in the unesterified form. The total percentage of chylomicron mass as CE was reduced from 12% in the presence of ACAT2 to ∼1% in ACAT2−/− mice. Altogether, the data demonstrate that ACAT2 increases cholesterol absorption efficiency by providing CE for chylomicron transport, but one copy of the Acat2 gene, providing ∼50% of ACAT2 mRNA and enzyme activity, was as effective as two copies in promoting cholesterol absorption.  相似文献   

4.
Serum lipid changes during infection may be associated with atherogenesis. No data are available on the effect of Brucellosis on lipids. Lipid parameters were determined in 28 patients with Brucellosis on admission and 4 months following treatment and were compared with 24 matched controls. Fasting levels of total cholesterol (TC), HDL-cholesterol (HDL-C), triglycerides, apolipoproteins (Apo) A, B, E CII, and CIII, and oxidized LDL (oxLDL) were measured. Activities of serum cholesterol ester transfer protein (CETP), paraoxonase 1 (PON1), and lipoprotein-associated phospholipase A2 (Lp-PLA2) and levels of cytokines [interleukins (IL)-1β, IL-6, and tumor necrosis factor (TNFa)] were also determined. On admission, patients compared with controls had 1) lower levels of TC, HDL-C, LDL-cholesterol (LDL-C), ApoB, ApoAI, and ApoCIII and higher LDL-C/HDL-C and ApoB/ApoAI ratios; 2) higher levels of IL-1b, IL-6, and TNFa; 3) similar ApoCII and oxLDL levels and Lp-PLA2 activity, lower PON1, and higher CETP activity; and 4) higher small dense LDL-C concentration. Four months later, increases in TC, HDL-C, LDL-C, ApoB, ApoAI, and ApoCIII levels, ApoB/ApoAI ratio, and PON1 activity were noticed compared with baseline, whereas CETP activity decreased. LDL-C/HDL-C ratio, ApoCII, and oxLDL levels, Lp-PLA2 activity, and small dense LDL-C concentration were not altered. Brucella infection is associated with an atherogenic lipid profile that is not fully restored 4 months following treatment.  相似文献   

5.
Yin RX  Li YY  Liu WY  Zhang L  Wu JZ 《PloS one》2011,6(3):e17954

Background

Little is known about the interactions of apolipoprotein (Apo) A5 gene polymorphisms and alcohol consumption on serum lipid profiles. The present study was undertaken to detect the interactions of ApoA5–1131T>C, c.553G>T and c.457G>A polymorphisms and alcohol consumption on serum lipid levels.

Methodology/Principal Findings

A total of 516 nondrinkers and 514 drinkers were randomly selected from our previous stratified randomized cluster samples. Genotyping was performed by polymerase chain reaction and restriction fragment length polymorphism. The levels of serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), ApoA1 and ApoB were higher in drinkers than in nondrinkers (P<0.05–0.001). The genotypic and allelic frequencies of three loci were not different between the two groups. The interactions between –1131T>C genotypes and alcohol consumption on ApoB levels (P<0.05) and the ApoA1/ApoB ratio (P<0.01), between c.553G>T genotypes and alcohol consumption on low-density lipoprotein cholesterol (LDL-C) levels (P<0.05) and the ApoA1/ApoB ratio (P<0.05), and between c.457G>A genotypes and alcohol consumption on TG levels (P<0.001) were detected by factorial regression analysis after controlling for potential confounders. Four haplotypes (T-G-G, C-G-G, T-A-G and C-G-T) had frequencies ranging from 0.06 to 0.87. Three haplotypes (C-G-G, T-A-G, and C-G-T) were significantly associated with serum lipid parameters. The –1131T>C genotypes were correlated with TG, and c.553G>T and c.457G>A genotypes were associated with HDL-C levels in nondrinkers (P<0.05 for all). For drinkers, the –1131T>C genotypes were correlated with TC, TG, LDL-C, ApoB levels and the ApoA1/ApoB ratio (P<0.01 for all); c.553G>T genotypes were correlated with TC, TG, HDL-C and LDL-C levels (P<0.05–0.01); and c.457G>A genotypes were associated with TG, LDL-C, ApoA1 and ApoB levels (P<0.05–0.01).

Conclusions

The differences in some serum lipid parameters between the drinkers and nondrinkers might partly result from different interactions of the ApoA5 gene polymorphisms and alcohol consumption.  相似文献   

6.
Low-fat diets have been shown to increase plasma concentrations of lipoprotein(a) [Lp(a)], a preferential lipoprotein carrier of oxidized phospholipids (OxPLs) in plasma, as well as small dense LDL particles. We sought to determine whether increases in plasma Lp(a) induced by a low-fat high-carbohydrate (LFHC) diet are related to changes in OxPL and LDL subclasses. We studied 63 healthy subjects after 4 weeks of consuming, in random order, a high-fat low-carbohydrate (HFLC) diet and a LFHC diet. Plasma concentrations of Lp(a) (P < 0.01), OxPL/apolipoprotein (apo)B (P < 0.005), and OxPL-apo(a) (P < 0.05) were significantly higher on the LFHC diet compared with the HFLC diet whereas LDL peak particle size was significantly smaller (P < 0.0001). Diet-induced changes in Lp(a) were strongly correlated with changes in OxPL/apoB (P < 0.0001). The increases in plasma Lp(a) levels after the LFHC diet were also correlated with decreases in medium LDL particles (P < 0.01) and increases in very small LDL particles (P < 0.05). These results demonstrate that induction of increased levels of Lp(a) by an LFHC diet is associated with increases in OxPLs and with changes in LDL subclass distribution that may reflect altered metabolism of Lp(a) particles.  相似文献   

7.

Background

Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown.

Methods and Findings

We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr−/−Apob 100/100).

Conclusions

Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome.  相似文献   

8.
Apolipoprotein B (apoB) is a nonexchangeable apolipoprotein. During lipoprotein assembly, it recruits phospholipids and triacylglycerols (TAG) into TAG-rich lipoprotein particles. It remains bound to secreted lipoproteins during lipid metabolism in plasma. The β1 region (residues 827–1880) of apoB has a high amphipathic β strand (AβS) content and is proposed to be one region anchoring apoB to lipoproteins. The AβS-rich region between apoB37 and apoB41 (residues 1694–1880) was cloned, expressed, and purified. The interfacial properties were studied at the triolein/water (TO/W) and air/water (A/W) interfaces. ApoB[37–41] is surface-active and adsorbs to the TO/W interface. After adsorption the unbound apoB[37–41] was removed from the aqueous phase. Adsorbed apoB[37–41] did not desorb and could not be forced off by increasing the surface pressure up to 23 mN/m. ApoB[37–41] adsorbed on the TO/W interface was completely elastic when compressed and expanded by ±13% of its area. On an A/W interface, the apoB[37–41] monolayer became solid when compressed to 4 mN/m pressure indicating extended β-sheet formation. It could be reversibly compressed and expanded between low pressure and its collapse pressure (35 mN/m). Our studies confirm that the AβS structure of apoB[37–41] is a lipid-binding motif that can irreversibly anchor apoB to lipoproteins.  相似文献   

9.
Polymorphisms of the FA desaturase (FADS) gene cluster have been associated with LDL, HDL, and triglyceride concentrations. Because FADS converts α-linolenic acid (ALA) and linoleic acid into PUFAs, we investigated the interaction between different PUFA intakes and the FADS polymorphism rs174547 (T>C) on fasting blood lipid and lipoprotein concentrations. We included 4,635 individuals (60% females, 45–68 years) from the Swedish population-based Malmö Diet and Cancer cohort. Dietary intakes were assessed by a modified diet history method including 7-day registration of cooked meals. The C-allele of rs174547 was associated with lower LDL concentration (P = 0.03). We observed significant interaction between rs174547 and long-chain ω-3 PUFA intakes on LDL (P = 0.01); the C-allele was only associated with lower LDL among individuals in the lowest tertile of long-chain ω-3 PUFA intakes (P < 0.001). In addition, significant interaction was observed between rs174547 and the ratio of ALA and linoleic FA intakes on HDL (P = 0.03). However, no significant associations between the C-allele and HDL were detected within the intake tertiles of the ratio. Our findings suggest that dietary intake levels of different PUFAs modify the associated effect of genetic variation in FADS on LDL and HDL  相似文献   

10.
11.
A single copy of apoB is the sole protein component of human LDL. ApoB is crucial for LDL particle stabilization and is the ligand for LDL receptor, through which cholesterol is delivered to cells. Dysregulation of the pathways of LDL metabolism is well documented in the pathophysiology of atherosclerosis. However, an understanding of the structure of LDL and apoB underlying these biological processes remains limited. In this study, we derived a 22 Å-resolution three-dimensional (3D) density map of LDL using cryo-electron microscopy and image reconstruction, which showed a backbone of high-density regions that encircle the LDL particle. Additional high-density belts complemented this backbone high density to enclose the edge of the LDL particle. Image reconstructions of monoclonal antibody-labeled LDL located six epitopes in five putative domains of apoB in 3D. Epitopes in the LDL receptor binding domain were located on one side of the LDL particle, and epitopes in the N-terminal and C-terminal domains of apoB were in close proximity at the front side of the particle. Such image information revealed a looped topology of apoB on the LDL surface and demonstrated the active role of apoB in maintaining the shape of the LDL particle.  相似文献   

12.
Impaired scavenger receptor class B type I (SR-BI)-mediated uptake of HDL-cholesterol esters (HDL-CE) induces adrenal insufficiency in mice. Humans contain an alternative route of HDL-CE clearance, namely through the transfer by cholesteryl ester transfer protein (CETP) to apolipoprotein B lipoproteins for subsequent uptake via the LDL receptor. In this study, we determined whether CETP can compensate for loss of adrenal SR-BI. Transgenic expression of human CETP (CETP Tg) in SR-BI knockout (KO) mice increased adrenal HDL-CE clearance from 33–58% of the control value. SR-BI KO/CETP Tg and SR-BI KO mice displayed adrenal hypertrophy due to equally high plasma adrenocorticotropic hormone levels. Adrenal cholesterol levels and plasma corticosterone levels were 38–52% decreased in SR-BI KO mice with and without CETP expression. SR-BI KO/CETP Tg mice also failed to increase their corticosterone level after lipopolysaccharide challenge, leading to an identical >4-fold increased tumor necrosis factor-α response compared with controls. These data indicate that uptake of CE via other routes than SR-BI is not sufficient to generate the cholesterol pool needed for optimal adrenal steroidogenesis. In conclusion, we have shown that CETP-mediated transfer of HDL-CE is not able to reverse adrenal insufficiency in SR-BI knockout mice. Thus, SR-BI-mediated uptake of serum cholesterol is essential for optimal adrenal function.  相似文献   

13.
Intestinal apolipoprotein B (apoB) mRNA undergoes C-to-U editing, mediated by the catalytic deaminase apobec-1, which results in translation of apoB48. Apobec1−/− mice produce only apoB100 and secrete larger chylomicron particles than those observed in wild-type (WT) mice. Here we show that transgenic rescue of intestinal apobec-1 expression (Apobec1Int/O) restores C-to-U RNA editing of apoB mRNA in vivo, including the canonical site at position 6666 and also at approximately 20 other newly identified downstream sites present in WT mice. The small intestine of Apobec1Int/O mice produces only apoB48, and the liver produces only apoB100. Serum chylomicron particles were smaller in Apobec1Int/O mice compared with those from Apobec1−/− mice, and the predominant fraction of serum apoB48 in Apobec1Int/O mice migrated in lipoproteins smaller than chylomicrons, even when these mice were fed a high-fat diet. Because apoB48 arises exclusively from the intestine in Apobec1Int/O mice and intestinal apoB48 synthesis and secretion rates were comparable to WT mice, we were able to infer the major sites of origin of serum apoB48 in WT mice. Our findings imply that less than 25% of serum apoB48 in WT mice arises from the intestine, with the majority originating from the liver.  相似文献   

14.
Our objective is to define differences in circulating lipoprotein subclasses between intensive versus conventional management of type 1 diabetes during the randomization phase of the Diabetes Control and Complications Trial (DCCT). NMR-determined lipoprotein subclass profiles (NMR-LSPs), which estimate molar subclass concentrations and mean particle diameters, were determined in 1,294 DCCT subjects after a median of 5 years (interquartile range: 4–6 years) of randomization to intensive or conventional diabetes management. In cross-sectional analyses, we compared standard lipids and NMR-LSPs between treatment groups. Standard total, LDL, and HDL cholesterol levels were similar between randomization groups, while triglyceride levels were lower in the intensively treated group. NMR-LSPs showed that intensive therapy was associated with larger LDL diameter (20.7 vs. 20.6 nm, P = 0.01) and lower levels of small LDL (median: 465 vs. 552 nmol/l, P = 0.007), total IDL/LDL (mean: 1,000 vs. 1,053 nmol/l, P = 0.01), and small HDL (mean: 17.3 vs. 18.6 μmol/l, P < 0.0001), the latter accounting for reduced total HDL (mean: 33.8 vs. 34.8 μmol/l, P = 0.01). In conclusion, intensive diabetes therapy was associated with potentially favorable changes in LDL and HDL subclasses in sera. Further research will determine whether these changes contribute to the beneficial effects of intensive diabetes management on vascular complications.  相似文献   

15.
Dyslipidemia is a major risk factor for CVD. Previous studies on lipid heritability have largely focused on white populations assessed after the obesity epidemic. Given secular trends and racial differences in lipid levels, this study explored whether lipid heritability is consistent across time and between races. African American and white nuclear families had fasting lipids measured in the 1970s and 22–30 years later. Heritability was estimated, and bivariate analyses between visits were conducted by race using variance components analysis. A total of 1,454 individuals (age 14.1/40.6 for offspring/parents at baseline; 39.6/66.5 at follow-up) in 373 families (286 white, 87 African American) were included. Lipid trait heritabilities were typically stronger during the 1970s than the 2000s. At baseline, additive genetic variation for LDL was significantly lower in African Americans than whites (P = 0.015). Shared genetic contribution to lipid variability over time was significant in both whites (all P < 0.0001) and African Americans (P ≤ 0.05 for total, LDL, and HDL cholesterol). African American families demonstrated shared environmental contributions to lipid variation over time (all P ≤ 0.05). Lower heritability, lower LDL genetic variance, and durable environmental effects across the obesity epidemic in African American families suggest race-specific approaches are needed to clarify the genetic etiology of lipids.  相似文献   

16.
Recently, we showed in APOE*3-Leiden cholesteryl ester transfer protein (E3L.CETP) mice that anacetrapib attenuated atherosclerosis development by reducing (V)LDL cholesterol [(V)LDL-C] rather than by raising HDL cholesterol. Here, we investigated the mechanism by which anacetrapib reduces (V)LDL-C and whether this effect was dependent on the inhibition of CETP. E3L.CETP mice were fed a Western-type diet alone or supplemented with anacetrapib (30 mg/kg body weight per day). Microarray analyses of livers revealed downregulation of the cholesterol biosynthesis pathway (P < 0.001) and predicted downregulation of pathways controlled by sterol regulatory element-binding proteins 1 and 2 (z-scores −2.56 and −2.90, respectively; both P < 0.001). These data suggest increased supply of cholesterol to the liver. We found that hepatic proprotein convertase subtilisin/kexin type 9 (Pcsk9) expression was decreased (−28%, P < 0.01), accompanied by decreased plasma PCSK9 levels (−47%, P < 0.001) and increased hepatic LDL receptor (LDLr) content (+64%, P < 0.01). Consistent with this, anacetrapib increased the clearance and hepatic uptake (+25%, P < 0.001) of [14C]cholesteryl oleate-labeled VLDL-mimicking particles. In E3L mice that do not express CETP, anacetrapib still decreased (V)LDL-C and plasma PCSK9 levels, indicating that these effects were independent of CETP inhibition. We conclude that anacetrapib reduces (V)LDL-C by two mechanisms: 1) inhibition of CETP activity, resulting in remodeled VLDL particles that are more susceptible to hepatic uptake; and 2) a CETP-independent reduction of plasma PCSK9 levels that has the potential to increase LDLr-mediated hepatic remnant clearance.  相似文献   

17.
Small ubiquitin-like modifier (SUMO1–3) conjugation plays a critical role in embryogenesis. Embryos deficient in the SUMO-conjugating enzyme Ubc9 die at the early postimplantation stage. Sumo1−/− mice are viable, as SUMO2/3 can compensate for most SUMO1 functions. To uncover the role of SUMO2/3 in embryogenesis, we generated Sumo2- and Sumo3-null mutant mice. Here, we report that Sumo3−/− mice were viable, while Sumo2−/− embryos exhibited severe developmental delay and died at approximately embryonic day 10.5 (E10.5). We also provide evidence that SUMO2 is the predominantly expressed SUMO isoform. Furthermore, although Sumo2+/− and Sumo2+/−;Sumo3+/− mice lacked any overt phenotype, only 2 Sumo2+/−;Sumo3−/− mice were found at birth in 35 litters after crossing Sumo2+/−;Sumo3+/− with Sumo3−/− mice, and these rare mice were considerably smaller than littermates of the other genotypes. Thus, our findings suggest that expression levels and not functional differences between SUMO2 and SUMO3 are critical for normal embryogenesis.  相似文献   

18.
A more negatively charged low-density lipoprotein (LDL), named minor LDL (mi-LDL), was separated by ionic exchange chromatography and further characterized. This mi-LDL contained lower amounts of polyunsaturated fatty acids, alpha- or gamma- tocopherol, but higher amounts of lipid hydroperoxides than the major LDL fraction (ma-LDL). We show here for the first time that apoB of mi-LDL is modified by lipid peroxidation products, such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA). Using polyclonal antibodies, generated against 4-HNE- or MDA-LDL and apoB, the ratio of 4-HNE- or MDA-derived epitopes to apoB of mi-LDL and ma-LDL was estimated by means of a solid phase fluorescence immunoassay. The ratio of 4-HNE-derived epitopes to apoB on mi-LDL was fourfold higher, while the ratio of MDA-derived epitopes to apoB was twofold higher, compared with the ratios obtained with ma-LDL. In a competition assay with mi- and ma-LDL, only mi-LDL was an effective competitor to inhibit the immunoreaction of anti-4-HNE-LDL with 4-HNE-LDL (by 24%) and of anti-MDA-LDL with MDA-LDL (by 10%).  相似文献   

19.
Mutations in Proprotein Convertase Subtilisin Kexin 9 (PCSK9) have been associated with autosomal dominant hypercholesterolemia. In vivo kinetic studies indicate that LDL catabolism was impaired and apolipoprotein B (apoB)-containing lipoprotein synthesis was enhanced in two patients presenting with the S127R mutation on PCSK9. To understand the physiological role of PCSK9, we overexpressed human PCSK9 in mouse and cellular models as well as attenuated the endogenous expression of PCSK9 in HuH7 hepatoma cells using RNA interference. Here, we show that PCSK9 dramatically impairs the expression of the low density lipoprotein receptor (LDLr) and, in turn, LDL cellular binding as well as LDL clearance from the plasma compartment in C57BL6/J mice but not in LDLr-deficient mice, establishing a definitive role for PCSK9 in the modulation of the LDLr metabolic pathway. In contrast to data obtained in S127R-PCSK9 patients presenting with increased apoB production, our study indicates that wild-type PCSK9 does not significantly alter the production and/or secretion of VLDL apoB in either cultured cells or mice. Finally, we show that unlike PCSK9 overexpression in mice, the S127R mutation in patients led to increased VLDL apoB levels, suggesting a potential gain of function for S127R-PCSK9 in humans.  相似文献   

20.
LDL cholesterol (LDL-C) contributes to coronary heart disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases LDL-C by inhibiting LDL-C clearance. The therapeutic potential for PCSK9 inhibitors is highlighted by the fact that PCSK9 loss-of-function carriers exhibit 15–30% lower circulating LDL-C and a disproportionately lower risk (47–88%) of experiencing a cardiovascular event. Here, we utilized pcsk9−/− mice and an anti-PCSK9 antibody to study the role of the LDL receptor (LDLR) and ApoE in PCSK9-mediated regulation of plasma cholesterol and atherosclerotic lesion development. We found that circulating cholesterol and atherosclerotic lesions were minimally modified in pcsk9−/− mice on either an LDLR- or ApoE-deficient background. Acute administration of an anti-PCSK9 antibody did not reduce circulating cholesterol in an ApoE-deficient background, but did reduce circulating cholesterol (−45%) and TGs (−36%) in APOE*3Leiden.cholesteryl ester transfer protein (CETP) mice, which contain mouse ApoE, human mutant APOE3*Leiden, and a functional LDLR. Chronic anti-PCSK9 antibody treatment in APOE*3Leiden.CETP mice resulted in a significant reduction in atherosclerotic lesion area (−91%) and reduced lesion complexity. Taken together, these results indicate that both LDLR and ApoE are required for PCSK9 inhibitor-mediated reductions in atherosclerosis, as both are needed to increase hepatic LDLR expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号