首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the excellent physicochemical properties of boron-doped carbon nanotubes (BCNTs), the electrochemical analysis of four free DNA bases at the BCNTs modified glassy carbon (GC) electrode was investigated. Herein, the BCNTs/GC electrode exhibited remarkable electrocatalytic activity towards the oxidation of purine bases (guanine (G), adenine (A)). More significantly, the direct oxidation of pyrimidine bases (thymine (T), cytosine (C)) was realized. It may be due to that BCNTs have the advantages of high electron transfer kinetics, large surface area, prominent antifouling ability and electrode activity. On basis of this, a novel and simple strategy for the determination of G, A, T and C was proposed. The BCNTs/GC electrode showed high sensitivity, wide linear range and capability of detection for the electrochemical determination of G, A, T, and C. On the other hand, the electrochemical oxidation of quaternary mixture of G, A, T, and C at the BCNTs/GC electrode was investigated. It was obtained that the peak separation between G and A, A and T, T and C were large enough for their potential recognition in mixture without any separation or pretreatment. The BCNTs/GC electrode also displayed good stability, reproducibility and excellent anti-interferent ability. Therefore, it can be believed that the BCNTs/GC electrode would provide a potential application for the electrochemical detection of DNA in the field of genetic-disease diagnosis.  相似文献   

2.
A new sensitive electrochemical sensor, a glassy carbon electrode modified with chemically cross-linked copper-complexed chitosan/multiwalled carbon nanotubes (Cu–CS/MWCNT/GCE), for rutin analysis was constructed. Experimental investigations of the influence of several parameters showed that the rutin can effectively accumulate on the surface of the Cu–CS/MWCNT/GCE, which accumulation caused a pair of well-defined redox peaks in the electrochemical signal when measurements were carried out in Britton–Robinson buffer solution (pH 3, 0.04 M). The surface of the Cu–CS/MWCNT/GCE was characterized by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry analysis. In a rutin concentration range of 0.05–100 μM and under optimized conditions, a linear relationship between the oxidation peak current of rutin and its concentration was obtained with a detection limit of 0.01 μM. The Cu–CS/MWCNT/GCE showed good selectivity, stability, and reproducibility. Moreover, the sensor was used to determine the presence of rutin in fruits with satisfactory results.  相似文献   

3.
A carbon ionic liquid electrode (CILE) was fabricated by using an ionic liquid of N-butylpyridinium hexafluorophosphate (BPPF(6)) as binder and further used for the simultaneous detection of adenine and guanine. The direct electrooxidation behaviors of adenine and guanine were carefully investigated on the CILE. The results indicated that both adenine and guanine showed the increase of the oxidation peak currents with the negative shift of the oxidation peak potentials in contrast to that on the traditional carbon paste electrode (CPE). The electrochemical parameters of adenine and guanine on the CILE were calculated and a new electroanalytical method was established for the detection of adenine and guanine, respectively. The CILE exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation as 0.304V. The measurements of thermally denatured single-stranded DNA (ssDNA) were further carried out and the value of (G+C)/(A+T) of ssDNA was calculated as 0.81.  相似文献   

4.
Wu K  Fei J  Hu S 《Analytical biochemistry》2003,318(1):100-106
A chemically modified electrode based on the carbon nanotube film-coated glassy carbon electrode (GCE) is described for the simultaneous determination of dopamine (DA) and serotonin (5-HT). The multiwall carbon nanotube (MWNT) film-coated GCE exhibits a marked enhancement effect on the current response of DA and 5-HT and lowers oxidation overpotentials. The responses of DA and 5-HT merge into a large peak at a bare GCE, but they yield two well-defined oxidation peaks at the MWNT film-coated GCE. The experimental parameters were optimized, and a direct electrochemical method for the simultaneous determination of DA and 5-HT was proposed. The interference of ascorbic acid (AA) was investigated, and the results showed that a large excess of AA did not interfere with the voltammetric responses of DA and 5-HT. The modified electrode has been successfully applied for the assay of 5-HT and DA in human blood serum.  相似文献   

5.
This article describes the selective determination of guanine (G) using the self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatonickel(II) (4α-Ni(II)TAPc) modified glassy carbon electrode (GCE) in 0.2 M acetate buffer solution (pH 4.0). The SAM of 4α-Ni(II)TAPc was formed on GCE by spontaneous adsorption of 1 mM 4α-Ni(II)TAPc in dimethylformamide (DMF). It shows two pairs of redox waves corresponding to Ni(III)/Ni(II) and Ni(III)Pc(-1)/Ni(III)Pc(-2) in 0.2 M acetate buffer solution. The SAM modified electrode exhibits excellent electrocatalytic activity toward the oxidation of G by enhancing its oxidation current with 150 mV less positive potential shift in contrast to bare GCE. Furthermore, the SAM modified electrode selectively determines G in the presence of high concentration of adenine (A). In differential pulse voltammetry measurements, the oxidation current response of G was increased linearly in the concentration range of 10 to 100 μM, and a detection limit was found to be 3×10(-8)M (signal/noise=3).  相似文献   

6.
A highly sensitive and selective amperometric hydrogen peroxide (H(2)O(2)) biosensor based on immobilization of hemoglobin (Hb) at multiwalled carbon nanotubes-zinc oxide (MWCNT/ZnO) composite modified glassy carbon electrode (GCE) is reported. ZnO microsponges were electrochemically grown on MWCNT surface by the simple, cost-effective, green, electrochemical method at room temperature. The MWCNT/ZnO/Hb composite film showed a pair of well-defined, quasi-reversible redox peaks with a formal potential (E°') of -0.336V, characteristic features of heme redox couple of Hb. The electron transfer rate constant (k(s)) of immobilized Hb was 1.26s(-1). The developed biosensor showed a very fast response (>2s) toward H(2)O(2) with good sensitivity, wide linear range, and low detection limit of 0.02μM. The fabricated biosensor showed interesting features, including high selectivity, acceptable stability, good reproducibility, and repeatability along with excellent conductivity, facile electron mobility of MWCNT, and good biocompatibility of ZnO. The fabrication method of this biosensor is simple and effective for determination of H(2)O(2) in real samples with quick response, good sensitivity, high selectivity, and acceptable recovery.  相似文献   

7.
A composite film of polyaniline (PAN) nano-networks/p-aminobenzene sulfonic acid (ABSA) modified glassy carbon electrode (GCE) has been fabricated via an electrochemical oxidation procedure and applied to the electro-catalytic oxidation of uric acid (UA) and ascorbic acid (AA). The ABSA monolayer at GCE surface has been characterized by X-ray photo-electron spectroscopy (XPS) and electrochemical techniques. Atomic force microscopy (AFM), field emission scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), UV-visible absorption spectra (UV-vis) and cyclic voltammetry (CV) have been used to investigate the PAN-ABSA composite film, which demonstrates the formation of the composite film and the maintenance of the electroactivity of PAN in neutral and even in alkaline media. Due to its different catalytic effects towards the electro-oxidation of UA and AA, the modified GCE can resolve the overlapped voltammetric response of UA and AA into two well-defined voltammetric peaks with both CV and differential pulse voltammetry (DPV), which can be used for the selective and simultaneous determination of these species in a mixture. The catalytic peak currents are linearly dependent on the concentrations of UA and AA in the range of 50-250 and 35-175mumoll(-1) with correlation coefficients of 0.997 and 0.998, respectively. The detection limits for UA and AA are 12 and 7.5mumoll(-1), respectively. Besides the good stability and reproducibility of PAN-ABSA/GCE due to the covalent attachment of ABSA at GCE surface, the modified electrode also exhibits good sensitivity and selectivity.  相似文献   

8.
A label-free electrochemical immunoassay for neuron-specific enolase (NSE), a kind of lung cancer marker, was developed in this work via novel electrochemical catalysis for signal amplification. The new amplified strategy was based on the electrochemical catalysis of nickel hexacyanoferrates nanoparticles (NiHCFNPs) in the presence of dopamine (DA). NiHCFNPs, which were assembled on the porous gold nanocrystals (AuNCs) modified glassy carbon electrode (GCE), could exhibit a distinct pair of redox peaks corresponding to anodic and cathodic reactions of hexacyanoferrate (II/III). Subsequently, gold nanoparticles functionalized graphene nanosheets (Au-Gra) were coated on the surface of NiHCFNPs/AuNCs film. Then an enhanced amount of neuron-specific enolase antibody (anti-NSE) could be loaded to obtain a sensitive immunosensor of anti-NSE/Au-Gra/NiHCFNPs/AuNCs/GCE due to the strong adsorption capacity and large specific surface area of Au-Gra. More importantly, the oxidation peak current can be enormously enhanced towards the electrocatalytic oxidation of DA based on NiHCFNPs, resulting in the further improvement of the immunosensor sensitivity. Under optimal conditions, the electrochemical immunosensor exhibited a linear range of 0.001-100 ng/mL with a detection limit of 0.3 pg/mL (S/N=3). Thus, the proposed immunosensor provides a rapid, simple, and sensitive immunoassay protocol for NSE detection, which may hold a promise for clinical diagnosis.  相似文献   

9.
A new electrochemical sensor based on a novel organic–inorganic material (PNFCTs) was proposed for detection of paracetamol in this paper. First, PNFCTs were prepared with multi-walled carbon nanotubes (MWNTs) and a derivative of 3,4,9,10-perylenetetracarboxylic dianhydride (PTC-NH2) via cross-linking method. Then, PNFCTs were coated onto the surface of the glassy carbon electrode (GCE) to form porous organic conducting polymer films (PNFCTs/GCE), which could not only increase the loading of paracetamol efficiently but also provide an interface with exceptional electrical conductivity for paracetamol. Finally, gold nanoparticles (GNPs) were attached to the electrode surface through electrodepositing method, which obtained GNPs/PNFCTs/GCE electrode. The electrochemical behavior of paracetamol on GNPs/PNFCTs/GCE was explored by cyclic voltammetrys (CVs) and differential pulse voltammograms (DPVs). The results showed that the GNPs/PNFCTs/GCE exhibited excellent electrocatalytic activity to paracetamol, which should be attributed to remarkable properties of the new composite nanomaterials with porous nanostructure and exceptional electrical conductivity. The wide liner range and detection limit were 0.3–575 and 0.1 μM, respectively. Finally, it was successfully used to detect paracetamol in dilution human serum and commercial tablets. The sensor shows great promise for simple, sensitive, and selective detection paracetamol and provides a promising approach in paracetamol clinical research and overdose diagnostic applications.  相似文献   

10.
Poly(sulfosalicylic acid) and single-stranded DNA composite (PSSA–ssDNA)-modified glassy carbon electrode (GCE) was prepared by electropolymerization and then successfully used to simultaneously determine adenine (A), guanine (G), and thymine (T). The characterization of electrochemically synthesized PSSA–ssDNA film was investigated by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The modified electrode exhibited enhanced electrocatalytic behavior and good stability for the simultaneous determination of A, G, and T in 0.1 M phosphate buffer solution (PBS, pH 7.0). Well-separated voltammetric peaks were obtained among A, G, and T presented in the analyte mixture. Under the optimal conditions, the peak currents for A, G, and T increased linearly with the increase of analyte mixture concentration in the ranges of 6.5 × 10−8 to 1.1 × 10−6, 6.5 × 10−8 to 1.1 × 10−6, and 4.1 × 10−6 to 2.7 × 10−5 M, respectively. The detection limits (signal/noise = 3) for A, G, and T were 2.2 × 10–8, 2.2 × 10–8, and 1.4 × 10–6 M, respectively.  相似文献   

11.
An electrodeposition method was applied to form gold-platinum (AuPt) alloy nanoparticles on the glassy carbon electrode (GCE) modified with a mixture of an ionic liquid (IL) and chitosan (Ch) (AuPt-Ch-IL/GCE). AuPt nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. AuPt-Ch-IL/GCE electrocatalyzed the reduction of H(2)O(2) and thus was suitable for the preparation of biosensors. Cholesterol oxidase (ChOx) was then, immobilized on the surface of the electrode by cross-linking ChOx and chitosan through addition of glutaraldehyde (ChOx/AuPt-Ch-IL/GCE). The fabricated biosensor exhibited two wide linear ranges of responses to cholesterol in the concentration ranges of 0.05-6.2 mM and 6.2-11.2 mM. The sensitivity of the biosensor was 90.7 μA mM(-1) cm(-2) and the limit of detection was 10 μM of cholesterol. The response time was less than 7 s. The Michaelis-Menten constant (K(m)) was found as 0.24 mM. The effect of the addition of 1 mM ascorbic acid and glucose was tested on the amperometric response of 0.5 mM cholesterol and no change in response current of cholesterol was observed.  相似文献   

12.
Sensitivity of Anthrax protective antigen (PA) detection has been improved by directly immobilizing a PA-specific peptide onto a multi-wall carbon nanotube (MWCNT). The MWCNT was covalently immobilized onto a polyaniline (PANI) electrode, which was prepared via electropolymerization of the aniline monomer onto a glassy carbon electrode (GCE). Then, the PA-specific peptide was covalently immobilized to the MWCNT layer for measurement. When comparing this technique to that of PA immobilization on an insulting self assembled organic layer, the advantages of the MWCNT are clear. The MWCNT sensor resulted in enhanced electron transfer across the sensing layer. The resulting limit of detection (LOD) was 0.4 pM, a 13-fold improvement over that of our previous self-assembled organic layer was used for immobilization of the same peptide. Neither positive nor negative interferences were observed when a sample containing both 100 pM PA and bovine serum albumin (BSA) was measured, indicating good selectivity of the proposed sensor.  相似文献   

13.
In this article, a conspicuously simple and highly sensitive amperometric immunosensor based on the sequential electrodeposition of Prussian blue (PB) and gold nanoparticles (GNPs) on multiwalled carbon nanotube (MWCNT)-modified glassy carbon electrode (GCE) surface is proposed for the detection of α-fetoprotein (AFP). By comparison with PB, the MWCNT/PB composite film had been proven to show much better electrochemical stability and a larger response current. The electrodeposited GNP film can be used not only to immobilize biomolecules but also to avoid the leakage of PB and to prevent shedding of MWCNT/PB composite film from the electrode surface. The performance and factors influencing the performance of the immunosensor were investigated. Under optimal experimental conditions, the proposed immunosensor for AFP was observed with an ultralow limit of detection (LOD) equal to 3 pg/ml (at 3δ), and the linear working range spanned the concentrations of AFP from 0.01 to 300 ng/ml. Moreover, the immunosensor, as well as a commercially available kit, was examined for use in the determination of AFP in real human serum specimens. More significant, the assay mentioned here is simpler than the traditional enzyme-linked immunosorbent assay (ELISA), and an excellent correlation of levels of AFP measured was obtained, indicating that the developed immunoassay could be a promising alternative approach for detection of AFP and other tumor markers in the clinical diagnosis.  相似文献   

14.
This paper describes the development of an immunosensor coupled to glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNT) (CNT-GCE) integrated with microfluidic systems for rapid and sensitive quantification of prostate specific antigen (PSA) in human serum samples. Mouse monoclonal (5G6) to PSA antibodies were immobilized on a rotating disk. PSA in the serum sample are allowed to react immunologically with the immobilized anti-tPSA and horseradish peroxidase (HRP) enzyme-labeled second antibodies specific to PSA. HRP, in the presence of hydrogen peroxide (H(2)O(2)) catalyzes the oxidation of 4-tert-butylcatechol (4-TBC), whose back electrochemical reduction was detected on CNT-GCE at -0.15 V. The electrochemical detection can be done within 1 min and total assay time was 30 min. The calculated detection limits for electrochemical detection and the ELISA procedure are 0.08 and 0.5 microg L(-1), respectively and the intra- and inter-assay coefficients of variation were below 4.5%. The electrochemical immunosensor showed higher sensitivity and lower time consumed than the standard spectrophotometric detection ELISA method, which shows potential for detecting PSA in clinical diagnosis.  相似文献   

15.
We report a novel electrochemical biosensor for direct discrimination of d- and l-mandelic acid (d- and l-MA) in aqueous medium. The glassy carbon electrode (GCE) surface was modified with reduced graphene oxide (rGO) and γ-globulin (GLOB). Electrochemical characterization of the modified electrodes was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode surfaces were also characterized by scanning electron microscopy. Electrochemical response of the prepared electrode (GCE/rGO/GLOB) for discrimination of d- and l-MA enantiomers was investigated by cyclic voltammetry and was compared with bare GCE in the concentration range of 2 to 10 mM. Whereas the bare GCE showed no electrochemical response for the MA enantiomers, the GCE/rGO/GLOB electrode exhibited direct and selective discrimination with different oxidation potential values of 1.47 and 1.71 V and weak reduction peaks at potential values of −1.37 and −1.48 V, respectively. In addition, electrochemical performance of the modified electrode was investigated in mixed solution of d- and l-MA. The results show that the produced electrode can be used as electrochemical chiral biosensor for MA.  相似文献   

16.
Electrochemical oxidation of serotonin (SN) onto zinc oxide (ZnO)-coated glassy carbon electrode (GCE) results in the generation of redox mediators (RMs) that are strongly adsorbed on electrode surface. The electrochemical properties of zinc oxide-electrogenerated redox mediator (ZnO/RM) (inorganic/organic) hybrid film-coated electrode has been studied using cyclic voltammetry (CV). The scanning electron microscope (SEM), atomic force microscope (AFM), and electrochemical techniques proved the immobilization of ZnO/RM core/shell microparticles on the electrode surface. The GCE modified with ZnO/RM hybrid film showed two reversible redox peaks in acidic solution, and the redox peaks were found to be pH dependent with slopes of −62 and −60 mV/pH, which are very close to the Nernst behavior. The GCE/ZnO/RM-modified electrode exhibited excellent electrocatalytic activity toward the oxidations of ascorbic acid (AA), dopamine (DA), and uric acid (UA) in 0.1 M phosphate buffer solution (PBS, pH 7.0). Indeed, ZnO/RM-coated GCE separated the anodic oxidation waves of DA, AA, and UA with well-defined peak separations in their mixture solution. Consequently, the GCE/ZnO/RMs were used for simultaneous detection of DA, AA, and UA in their mixture solution. Using CV, calibration curves for DA, AA, and UA were obtained over the range of 6.0 × 10−6 to 9.6 × 10−4 M, 1.5 × 10−5 to 2.4 × 10−4 M, and 5.0 × 10−5 to 8 × 10−4 M with correlation coefficients of 0.992, 0.991, and 0.989, respectively. Moreover, ZnO/RM-modified GCE had good stability and antifouling properties.  相似文献   

17.
A sensitive label-free electrochemical immunosensing platform was designed by a redox matrix of gold nanoparticles (GNPs), Azure І and multi-wall carbon nanotubes (MWCNT) self-assemblying nanocomposite. To construct the immunosensor, MWCNT was first dispersed in Nafion (Nf) to obtain a homogeneous solution and then it was dropped on the surface of the gold electrode (Au). Then the positively-charged redox molecule, Azure І, was entrapped into MWCNT–Nf film to form a redox nanostructural membrane. Next, the negatively charged gold nanoparticles (GNPs) were assembled to the interface through the electrostatic force. Finally, carcinoembryonic antibody molecules could be absorbed into the GNPs/Azure І/MWCNT–Nf immobilization matrix. Using carcinoembryonic antigen (CEA) as a model protein, the electrochemical immunosensor exhibited good stability and reproducibility, as well as good selectivity and storage stability. This strategy presented a promising platform for sensitive and facile monitoring of CEA.  相似文献   

18.
Trinitrotoluene, usually known as TNT, is a kind of chemical explosive with hazardous and toxic effects on the environment and human health. Ever-increasing needs for a secure society and green environment essentially require the detection of TNT with rapidity, high sensitivity and low cost. In this article, ionic liquid-graphene hybrid nanosheets (IL-GNs) have been used as an enhanced material for rapidly electrochemical detection of trinitrotoluene (TNT). IL-GNs were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photo-electron spectroscopy, electrochemical impedance spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy, which confirmed that IL has been effectively functionalized on the surface of GNs. Significantly, IL-GNs modified glassy carbon electrode (GCE) showed 6.2 and 51.4-folds higher current signals for TNT reduction than IL-CNTs/GCE and bare GCE, respectively. Adsorptive stripping voltammetry (ASV) for the detection of TNT on IL-GNs exhibited a good linear range from 0.03 to 1.5 ppm with a detection limit of 4 ppb on the basis of the signal-to-noise characteristics (S/N=3). Moreover, IL-GNs/GCE exhibited good stability and reproducibility for the detection of TNT. And, IL-GNs based electrochemical detection platform was also successfully demonstrated for the detection of TNT in ground water, tap water, and lake water with satisfactory results.  相似文献   

19.
Meldola's blue (MB) functionalized carbon nanotubes (CNT) nanocomposite film (MB/CNT) electrode was prepared by non-covalent adsorbing MB on the surface of a carbon nanotubes modified glassy carbon electrode (CNT/GCE). Electrochemical behaviors of the resulting electrode were investigated thoroughly with cyclic voltammetry in the potential range of -0.6 to 0.2V, and two well-defined redox couples were clearly visualized. We also studied the electron transfer kinetics of MB loaded on CNT (MB/CNT) in comparison with that of MB on conventional graphite powder (MB/GP). The heterogeneous electron transfer rate constant (k(s)) of MB/CNT was calculated to be about three times larger than that of MB/GP. The accelerated electron transfer kinetics was attributed to the unique electrical and nanostructural properties of CNT supports as well as the interaction between MB and CNT. In connection with the oxidation of nicotinamide adenine dinucleotide (NADH), excellent electrocatalytic activities were observed at MB/CNT/GCE compared with MB/GP modified glassy carbon electrode (MB/GP/GCE). Based on the results, a new NADH sensor was successfully established using the MB/CNT/GCE. Under a lower operation potential of -0.1V, NADH could be detected linearly up to a concentration of 500 microM with an extremely lower detection limit of 0.048+/-0.02 microM estimated at a signal-to-noise ratio of 3. Sensitivity, selectivity, reproducibility and stability of the NADH sensor were also investigated and the main analytical data were also compared with those obtained with the MB/GP/GCE.  相似文献   

20.
A new highly catalytic and intensely sensitive amperometric sensor based on PtM (where M=Pd, Ir) bimetallic nanoparticles (NPs) for the rapid and accurate estimation of hydrogen peroxide (H(2)O(2)) by electrooxidation in physiological conditions is reported. PtPd and PtIr NPs-decorated multiwalled carbon nanotube nanocatalysts (PtM/MWCNTs) were prepared by a modified Watanabe method, and were characterized by XRD, TEM, ICP, and XAS. The sensors were constructed by immobilizing PtM/MWCNTs nanocatalysts in a Nafion film on a glassy carbon electrode. Both PtPd/MWCNTs and PtIr/MWCNTs assemblies catalyzed the electrochemical oxidation of H(2)O(2). Cyclic voltammetry characterization measurements revealed that both the PtM (M=Pd, Ir)/MWCNTs/GCE possessed similar electrochemical surface areas (~0.55 cm(2)), and electron transfer rate constants (~1.23 × 10(-3)cms(-1)); however, the PtPd sensor showed a better performance in H(2)O(2) sensing than did the PtIr counterpart. Explanations were sought from XAS measurements to explain the reasons for differences in sensor activity. When applied to the electrochemical detection of H(2)O(2), the PtPd/MWCNTs/GC electrode exhibited a low detection limit of 1.2 μM with a wide linear range of 2.5-125 μM (R(2)=0.9996). A low working potential (0V (SCE)), fast amperometric response (<5s), and high sensitivity (414.8 μA mM(-1)cm(-2)) were achieved at the PtPd/MWCNTs/GC electrode. In addition, the PtPd/MWCNTs nanocatalyst sensor electrode also exhibited excellent reproducibility and stability. Along with these attractive features, the sensor electrode also displayed very high specificity to H(2)O(2) with complete elimination of interference from UA, AA, AAP and glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号