首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel intracellular poly(3-hydroxybutyrate) (PHB) depolymerase (PhaZd) of Wautersia eutropha (formerly Ralstonia eutropha) H16 which shows similarity with the catalytic domain of the extracellular PHB depolymerase in Ralstonia pickettii T1 was identified. The positions of the catalytic triad (Ser190-Asp266-His330) and oxyanion hole (His108) in the amino acid sequence of PhaZd deduced from the nucleotide sequence roughly accorded with those of the extracellular PHB depolymerase of R. pickettii T1, but a signal peptide, a linker domain, and a substrate binding domain were missing. The PhaZd gene was cloned and the gene product was purified from Escherichia coli. The specific activity of PhaZd toward artificial amorphous PHB granules was significantly greater than that of other known intracellular PHB depolymerase or 3-hydroxybutyrate (3HB) oligomer hydrolases of W. eutropha H16. The enzyme degraded artificial amorphous PHB granules and mainly released various 3-hydroxybutyrate oligomers. PhaZd distributed nearly equally between PHB inclusion bodies and the cytosolic fraction. The amount of PHB was greater in phaZd deletion mutant cells than the wild-type cells under various culture conditions. These results indicate that PhaZd is a novel intracellular PHB depolymerase which participates in the mobilization of PHB in W. eutropha H16 along with other PHB depolymerases.  相似文献   

2.
Seven gene loci encoding putative proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS) were identified in the genome of Ralstonia eutropha H16 by in silico analysis. Except the N-acetylglucosamine-specific PEP-PTS, an additional complete PEP-PTS is lacking in strain H16. Based on these findings, we generated single and multiple deletion mutants defective mainly in the PEP-PTS genes to investigate their influence on carbon source utilization, growth behavior, and poly(3-hydroxybutyrate) (PHB) accumulation. As supposed, the H16 ΔfrcACB and H16 ΔnagFEC mutants exhibited no growth when cultivated on fructose and N-acetylglucosamine, respectively. Furthermore, a transposon mutant with a ptsM-ptsH insertion site did not grow on both carbon sources. The observed phenotype was not complemented, suggesting that it results from an interaction of genes or a polar effect caused by the Tn5::mob insertion. ptsM, ptsH, and ptsI single, double, and triple mutants stored much less PHB than the wild type (about 10 to 39% [wt/wt] of cell dry weight) and caused reduced PHB production in mutants lacking the H16_A2203, H16_A0384, frcACB, or nagFEC genes. In contrast, mutant H16 ΔH16_A0384 accumulated 11.5% (wt/wt) more PHB than the wild type when grown on gluconate and suppressed partially the negative effect of the ptsMHI deletion on PHB synthesis. Based on our experimental data, we discussed whether the PEP-PTS homologous proteins in R. eutropha H16 are exclusively involved in the complex sugar transport system or whether they are also involved in cellular regulatory functions of carbon and PHB metabolism.  相似文献   

3.
4.
In Ralstonia eutropha H16, seven genes encoding proteins being involved in the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS) were identified. In order to provide more insights into the poly(3-hydroxybutyrate) (PHB)-leaky phenotype of the HPr/EI deletion mutants H16ΔptsH, H16ΔptsI, and H16ΔptsHI when grown on the non-PTS substrate gluconate, parallel fermentations for comparison of their growth behavior were performed. Samples from the exponential, the early stationary, and late stationary growth phases were investigated by microscopy, gas chromatography and (phospho-) proteome analysis. A total of 71 differentially expressed proteins were identified using 2D-PAGE, Pro-Q Diamond and Coomassie staining, and MALDI-TOF analysis. Detected proteins were classified into five major functional groups: carbon metabolism, energy metabolism, amino acid metabolism, translation, and membrane transport/outer membrane proteins. Proteome analyses revealed enhanced expression of proteins involved in the Entner-Doudoroff pathway and in subsequent reactions in cells of strain H16 compared to the mutant H16ΔptsHI. Furthermore, proteins involved in PHB accumulation showed increased abundance in the wild-type. This expression pattern allowed us to identify proteins affecting carbon metabolism/PHB biosynthesis in strain H16 and translation/amino acid metabolism in strain H16ΔptsHI, and to gain insight into the molecular response of R. eutropha to the deletion of HPr/EI.  相似文献   

5.
Phasins play an important role in the formation of poly(3-hydroxybutyrate) [PHB] granules and affect their size and number in the cells. Recent studies on the PHB granule proteome and analysis of the complete genomic DNA sequence of Ralstonia eutropha H16 have identified three homologues of the phasin protein PhaP1. In this study, mutants of R. eutropha deficient in the expression of the phasin genes phaP1, phaP2, phaP3, phaP4, phaP12, phaP123, and phaP1234 were examined by gas chromatography. In addition, the nanostructures of the PHB granules of the wild-type and of the mutants were imaged by atomic force microscopy (AFM), and the molecular masses of the accumulated PHB were analyzed by gel permeation chromatography. For this, cells were cultivated under conditions permissive for accumulation of PHB and were then cultivated under conditions permissive for degradation of PHB. Mutants deficient in the expression of phaP2, phaP3, or phaP4 genes mobilized the stored PHB only slowly like the wild-type, whereas degradation occurred much earlier and faster in the phaP1 single mutant as well as in all multiple mutants defective in the phaP1 gene plus one or more other phasin genes. This indicated that the presence of the major phasin PhaP1 on the granule surface is important for PHB degradation and that this phasin is therefore of particular relevance for PHB accumulation. It was also shown that the molecular weights of the accumulated PHB were identical in all examined strains; phasins have therefore no influence on the molecular weight of PHB. The AFM images obtained in this study showed that the PHB granules of R. eutropha H16 form a single interconnected system inside the wild-type cells.  相似文献   

6.
Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180?mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270?mg/L isobutanol and 40?mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14?g/L branched-chain alcohols over the duration of 50?days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis.  相似文献   

7.
The pyruvate dehydrogenase multienzyme complex (PDHC) catalyses the oxidative decarboxylation of pyruvate and the subsequent acetylation of coenzyme A to acetyl-CoA. Previously, limited proteolysis experiments indicated that the N-terminal region of the homodimeric pyruvate dehydrogenase (E1p) from Azotobacter vinelandii could be involved in the binding of E1p to the core protein (E2p) [Hengeveld, A. F., Westphal, A. H. & de Kok, A. (1997) Eur J. Biochem. 250, 260-268]. To further investigate this hypothesis N-terminal deletion mutants of the E1p component of Azotobacter vinelandii pyruvate dehydrogenase complex were constructed and characterized. Up to nine N-terminal amino acids could be removed from E1p without effecting the properties of the enzyme. Truncation of up to 48 amino acids did not effect the expression or folding abilities of the enzyme, but the truncated enzymes could no longer interact with E2p. The 48 amino acid deletion mutant (E1pdelta48) is catalytically fully functional: it has a Vmax value identical to that of wild-type E1p, it can reductively acetylate the lipoamide group attached to the lipoyl domain of the core enzyme (E2p) and it forms a dimeric molecule. In contrast, the S0.5 for pyruvate is decreased. A heterodimer was constructed containing one subunit of wild-type E1p and one subunit of E1pdelta48. From the observation that the heterodimer was not able to bind to E2p, it is concluded that both N-terminal domains are needed for the binding of E1p to E2p. The interactions are thought to be mainly of an electrostatic nature involving negatively charged residues on the N-terminal domains of E1p and previously identified positively charged residues on the binding and catalytic domain of E2p.  相似文献   

8.
9.
Several independent transposon Tn5-induced mutants of Ralstonia eutropha H16 exhibited a poly(3-hydroxybutyric acid) (PHB) elevated phenotype and accumulated substantial amounts of PHB already in the exponential growth phase. The insertion loci of Tn5 in these six mutants were mapped in the genes hldA (twice), hldC (twice), rfaF2, and rfaF3, which are all involved in the synthesis of lipopolysaccharides (LPS), an important component of the outer membrane (OM) of Gram-negative bacteria. The generated defined deletion mutant ΔhldA confirmed the PHB elevated phenotype. According to the literature,such a truncated LPS may cause an increased permeability of the OM; thereby, the mutations may lead to a facilitated uptake of carbon source from the medium as exemplarily shown for gluconate and succinate. Thus, the ratio of carbon to nitrogen in the cell is increased. Proteome analyses revealed reinforcement of the Entner–Doudoroff pathway and of subsequent reactions that finally may lead to higher concentrations of acetyl-CoA in the cells. Due to the impaired synthesis of complete LPS, intermediates of LPS biosynthesis might be recycled by reactions yielding higher levels of NADPH and acetyl-CoA. Since the latter are precursors for synthesis of PHB, this could explain the elevated synthesis and accumulation of this polymer in case of the LPS mutants.  相似文献   

10.
The lipoyl domains of the dihydrolipoyl acyltransferase (E2p, E2o) components of the pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes are specifically recognised by their cognate 2-oxo acid decarboxylase (E1p, E1o). A prominent surface loop links the first and second beta-strands in all lipoyl domains, close in space to the lipoyl-lysine beta-turn. This loop was subjected to various modifications by directed mutagenesis of a sub-gene encoding a lipoyl domain of Escherichia coli E2p. Deletion of the loop (four residues) rendered the domain incapable of reductive acetylation by E. coli E1p in the presence of pyruvate, but insertion of a new loop (six residues) corresponding to that in the E2o lipoyl domain partly restored this ability, albeit with a much lower rate. However, the modified domain remained unable to undergo reductive succinylation by E1o in the presence of 2-oxoglutarate. Additional exchange of the two residues on the C-terminal side of the loop (V14A, E15T) had no effect. Insertion of a different four-residue loop also restored a limited ability to undergo reductive acetylation, but still significantly less than that of the wild-type domain. Exchanging the residue on the N-terminal side of the lipoyl-lysine beta-turn in the E2p and E2o domains (G39T), both singly and in conjunction with the loop exchange, had no effect on the ability of the E2p domain to be reductively acetylated but did confer a slight increase in susceptibility to reductive succinylation. All mutant E2p domains, apart from that with the loop deletion (LD), were readily lipoylated in vitro by E. coli lipoate protein ligase A; the E2p LD mutant could be lipoylated only at a significantly lower rate. Likewise, this domain exhibited 1D and 2D NMR spectra characteristic of a partially folded protein, whereas the spectra of mutants with modified loops were similar to those of the wild-type domain. The surface loop is evidently important to the structural integrity of the domain and may help to stabilize the thioester bond linking the acyl group to the reduced lipoyl-lysine swinging arm as part of the catalytic mechanism. Recognition of the lipoyl domain by its partner E1 appears to be a complex process and not attributable to any single determinant on the domain.  相似文献   

11.
An intracellular poly[D(-)-3-hydroxybutyrate] (PHB) depolymerase gene (phaZ) has been cloned from Ralstonia eutropha H16 by the shotgun method, sequenced, and characterized. Nucleotide sequence analysis of a 2.3-kbp DNA fragment revealed an open reading frame of 1,260 bp, encoding a protein of 419 amino acids with a predicted molecular mass of 47,316 Da. The crude extract of Escherichia coli containing the PHB depolymerase gene digested artificial amorphous PHB granules and released mainly oligomeric D(-)-3-hydroxybutyrate, with some monomer. The gene product did not hydrolyze crystalline PHB or freeze-dried artificial amorphous PHB granules. The deduced amino acid sequence lacked sequence corresponding to a classical lipase box, Gly-X-Ser-X-Gly. The gene product was expressed in R. eutropha cells concomitant with the synthesis of PHB and localized in PHB granules. Although a mutant of R. eutropha whose phaZ gene was disrupted showed a higher PHB content compared to the wild type in a nutrient-rich medium, it accumulated PHB as much as the wild type did in a nitrogen-free, carbon-rich medium. These results indicate that the cloned phaZ gene encodes an intracellular PHB depolymerase in R. eutropha.  相似文献   

12.
An intracellular 3-hydroxybutyrate (3HB)-oligomer hydrolase (PhaZ2(Reu)) of Ralstonia eutropha was purified from Escherichia coli harboring a plasmid containing phaZ2(Reu). The purified enzyme hydrolyzed linear and cyclic 3HB-oligomers. Although it did not degrade crystalline poly(3-hydroxybutyrate) (PHB), the purified enzyme degraded artificial amorphous PHB at a rate similar to that of the previously identified intracellular PHB (iPHB) depolymerase (PhaZ1(Reu)). The enzyme appeared to be an endo-type hydrolase, since it actively hydrolyzed cyclic 3HB-oligomers. However, it degraded various linear 3HB-oligomers and amorphous PHB in the fashion of an exo-type hydrolase, releasing one monomer unit at a time. PhaZ2 was found to bind to PHB inclusion bodies and as a soluble enzyme to cell-free supernatant fractions in R. eutropha; in contrast, PhaZ1 bound exclusively to the inclusion bodies. When R. eutropha H16 was cultivated in a nutrient-rich medium, the transient deposition of PHB was observed: the content of PHB was maximized in the log growth phase (12 h, ca. 14% PHB of dry cell weight) and decreased to a very low level in the stationary phase (ca. 1% of dry cell weight). In each phaZ1-null mutant and phaZ2-null mutant, the PHB content in the cell increased to ca. 5% in the stationary phase. A double mutant lacking both phaZ1 and phaZ2 showed increased PHB content in the log phase (ca. 20%) and also an elevated PHB level (ca. 8%) in the stationary phase. These results indicate that PhaZ2 is a novel iPHB depolymerase, which participates in the mobilization of PHB in R. eutropha along with PhaZ1.  相似文献   

13.
14.
Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha   总被引:1,自引:0,他引:1       下载免费PDF全文
Ralstonia eutropha H16 degraded (mobilized) previously accumulated poly(3-hydroxybutyrate) (PHB) in the absence of an exogenous carbon source and used the degradation products for growth and survival. Isolated native PHB granules of mobilized R. eutropha cells released 3-hydroxybutyrate (3HB) at a threefold higher rate than did control granules of nonmobilized bacteria. No 3HB was released by native PHB granules of recombinant Escherichia coli expressing the PHB biosynthetic genes. Native PHB granules isolated from chromosomal knockout mutants of an intracellular PHB (i-PHB) depolymerase gene of R. eutropha H16 and HF210 showed a reduced but not completely eliminated activity of 3HB release and indicated the presence of i-PHB depolymerase isoenzymes.  相似文献   

15.
Wild type dihydrolipoyltransacetylase(E2p)-components from the pyruvate dehydrogenase complex of A. vinelandii or E. coli, and mutants of A. vinelandii E2p with stepwise deletions of the lipoyl domains or the alanine- and proline-rich region between the binding and the catalytic domain have been overexpressed in E. coli TG2. The high expression of A. vinelandii wild type E2p (20% of cellular protein) and of a mutant enzyme with two lipoyl domains changed the properties of the inner bacterial membrane. This resulted in a solubilization of A. vinelandii E2p after degradation of the outer membrane by lysozyme without any contamination by E. coli pyruvate dehydrogenase complex (PDC) or other high-molecular-weight contaminants. The same effect could be detected for A. vinelandii E2o, an E2 which contains only one lipoyl domain, whereas almost no solubilization of A. vinelandii E2p with one lipoyl domain or of E2p consisting only of the binding and catalytic domain was found. Partial or complete deletion of the alanine- and proline-rich sequence between the binding and the catalytic domain did also decrease the solubilization of the E2p-mutants after lysozyme treatment. Immunocytochemical experiments on E. coli TG2 cells expressing A. vinelandii wild type E2p indicated that the enzyme was present as a soluble protein in the cytoplasm. In contrast, overexpressed A. vinelandii E2p with deletion of all three lipoyl domains and E. coli wild type E2p aggregated intracellularly. The solubilization by lysozyme is therefore ascribed to excluded volume effects leading to changes in the properties of the inner bacterial membrane.  相似文献   

16.
刘双江 《微生物学报》2004,44(1):111-114
建立了一种分离纯化聚羟基丁酸(Polyhydroxybutyrate,PHB)颗粒的改良方法。采用这种方法从Ralstonia eutropha菌株H16(野生型)、SK1489(Tn5诱变的PHB泄漏菌株)、JMP222(野生的PHB泄漏菌株)分离了PHB颗粒。进一步比较研究了不同菌株的PHB解聚酶和3-羟基丁酸脱氢酶的活性。研究结果表明,菌株SK1489的PHB解聚酶活性(48h培养后达1.82U/mg)明显高于野生型菌株H16(48h培养后达0.37U/mg),菌株JMP222的3-羟基丁酸脱氢酶活性(培养96h后达165.9U/mg)比菌株H16培养(96h后达64.0U/mg)高许多。这些结果显示,不同菌株PHB的泄漏有不同的原因,突变株SK1489导致PHB泄漏的原因是解聚酶活性高,而野生型JMP222PHB泄漏的原因主要是3-羟基丁酸脱氢酶活性高。  相似文献   

17.
J E Lawson  R H Behal  L J Reed 《Biochemistry》1991,30(11):2834-2839
Disruption of the PDX1 gene encoding the protein X component of the mitochondrial pyruvate dehydrogenase (PDH) complex in Saccharomyces cerevisiae did not affect viability of the cells. However, extracts of mitochondria from the mutant, in contrast to extracts of wild-type mitochondria, did not catalyze a CoA- and NAD(+)-linked oxidation of pyruvate. The PDH complex isolated from the mutant cells contained pyruvate dehydrogenase (E1 alpha + E1 beta) and dihydrolipoamide acetyltransferase (E2) but lacked protein X and dihydrolipoamide dehydrogenase (E3). Mutant cells transformed with the gene for protein X on a unit-copy plasmid produced a PDH complex that contained protein X and E3, as well as E1 alpha, E1 beta, and E2, and exhibited overall activity similar to that of the wild-type PDH complex. These observations indicate that protein X is not involved in assembly of the E2 core nor is it an integral part of the E2 core. Rather, protein X apparently plays a structural role in the PDH complex; i.e., it binds and positions E3 to the E2 core, and this specific binding is essential for a functional PDH complex. Additional evidence for this conclusion was obtained with deletion mutations. Deletion of most of the lipoyl domain (residues 6-80) of protein X had little effect on the overall activity of the PDH complex. This observation indicates that the lipoyl domain, and its covalently bound lipoyl moiety, is not essential for protein X function. However, deletion of the putative subunit binding domain (residues approximately 144-180) of protein X resulted in loss of high-affinity binding of E3 and concomitant loss of overall activity of the PDH complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A genomic library of total DNA of Pseudomonas cepacia AC1100 was constructed on a broad-host-range cosmid vector pCP13 in Escherichia coli AC80. A 25-kb segment was isolated from the library which complemented a Tn5-generated, 2,4,5-trichlorophenoxyacetic acid-negative (2,4,5-T-) mutant, P. cepacia PT88. This mutation was partially characterized and appeared to be lacking functional enzyme required for metabolism of an intermediate of the 2,4,5-T pathway, recently identified as 5-chloro-1,2,4-trihydroxybenzene [Chapman et al., Abstr. Soc. Environ. Toxicol. Chem. USA 8 (1987) 127]. A simple colorimetric assay was developed to detect the presence of this active enzyme in intact cells and was used to determine the expression of complementing genes. Subcloning experiments showed that a 4-kb BamHI-PstI fragment and a 290-bp PstI-EcoRI fragment, separated by 1.3-kb, were required for complementation. Both fragments are identified to be chromosomal in origin. Hybridization studies using the subcloned fragments revealed that in addition to a Tn5 insertion, mutant PT88 contained an extensive chromosomal deletion accounting for its 2,4,5-T- phenotype. The cloned fragments did not show homology to plasmid DNAs carrying degradative genes for toluene, naphthalene and 3-chlorobenzoate.  相似文献   

19.
Poly-beta-hydroxybutyrate (PHB) biosynthesis in Ralstonia eutropha from gluconate as a carbon source is carried out through the Entner-Doudoroff (ED) pathway and the pentose-phosphate (PP) pathway generating NADPH and glyceraldehyde-3-phosphate that flows to acetyl-CoA, actively in the unbalanced PHB accumulation phase. The gnd gene encoding 6-phosphogluconate dehydrogenase (6PGDH) and the tktA gene encoding the transketolase (TK) in PP pathway of E. coli were transformed into R. eutropha H16 to modify the metabolic flux of gluconate to the PHB biosynthesis. Over-generated NADPH by the amplified gnd gene tended to depress the cell growth and PHB concentration. Meanwhile, the amplified tktA gene significantly increased both PHB biosynthesis and cell growth as a result of the effective flow of glyceraldehyde-3-phosphate into acetyl-CoA along with the concomitant supplementation of NADPH. The amplified tktA gene also activated the enzyme activities directly associated with PHB biosynthesis. The transformant R. eutropha harboring tktA gene was cultivated using pH-stat-fed-batch to achieve the overproduction of PHB.  相似文献   

20.
Abstract The wild-type strain Rhodobacter sphaeroides DSM 158 is a nitrate-reducing bacterium with a periplasmic nitrate reductase. Addition of chlorate to the culture medium causes a stimulation of the phototrophic growth, indicating that this strain is able to use chlorate as an ancillary oxidant. Several mutant strains of R. sphaeroides deficient in nitrate reductase activity were obtained by transposon Tn5 mutagenesis. Mutant strain NR45 exhibited high constitutive nitrate and chlorate reductase activities and phototrophic growth was also increased by the presence of chlorate. In contrast, the stimulation of growth by chlorate was not observed in mutant strains NR8 and NR13, in which transposon Tn5 insertion causes the simultaneous loss of both nitrate and chlorate reductase activities. Tn5 insertion probably does not affect molybdenum metabolism since NR8 and NR13 mutants exhibit both xanthine dehydrogenase and nitrogenase activities. These results that a single enzyme could reduce both nitrate and chlorate in R. sphaeroides DSM 158.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号