首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated diverse reproductive types in complex mating systems of steelhead Oncorhynchus mykiss . Postspawned steelhead (kelts) were sampled during attempted downstream migration over Lower Granite Dam on the Snake River, U.S.A. Multilocus microsatellite genotypes (14 loci) were used to assign unknown origin, kelt individuals to upstream populations of origin. Results indicated that iteroparity is a life-history trait that remains in several tributaries of the Snake River basin despite strong selection against downstream adult passage because of hydroelectric dams. The largest populations of steelhead in the Snake River, however, were only weakly represented (Clearwater River = 7·5% and Salmon River = 9·4%, respectively) in the kelt steelhead mixture relative to the Grande Ronde River (18·2%), Imnaha River (17·4%), Pahsimeroi Hatchery (25·2%) and Asotin Creek (22·2%). A lack of correlation between population escapement size and kelt proportions ( P > 0·05) suggests that iteroparity was not uniformly expressed across populations, but was significantly negatively correlated with body size ( P < 0·05). Iteroparity may be a valuable source of genetic variability and a conservation priority, especially in years with poor recruitment or in recently bottlenecked populations.  相似文献   

2.
River flow regulation by dams for hydroelectric generation has been a common practice worldwide for centuries, with diverse ecological impacts. We studied upstream and downstream reaches of three British Columbia Hydro reservoirs on the Allouette, Coquitlam, and Cheakamus Rivers to determine if riparian plant communities were affected by the dams. We determined cover of all plants in consecutive 1 m2 quadrats along five to six 14 m-long belt transects in each 300 m upstream and downstream sections of these rivers. We encountered 166 plant species in a total of 448 quadrats. Differences in plant communities (abundance, species richness, diversity) amongst rivers were larger than that between the upstream versus downstream of the rivers. This suggests that any difference caused by reservoir management was within the natural range of variation found across the rivers. We found significant reductions in the occurrences of red alder and western red cedar downstream of reservoirs. The lack of regeneration of these two species may be attributable to the reduction in extremes of flow variation and lack of sediment transport due to the reservoirs. Coordinated flow management can help mitigate these downstream impacts.  相似文献   

3.
Worldwide, humans have tremendously altered freshwater ecosystems and arguably, construction of dams has had the greatest effect. Maintaining natural ecological processes and developing mitigation strategies that will maintain species while retaining dam benefits is challenging. In the Columbia River, USA, over the last 30 years more than US$7 billion has been spent on efforts to save historically large runs of salmon. These efforts have included improving passage conditions at dams through construction of efficient fish ladders for adult salmon, effective fish passage facilities for downstream migrating juvenile salmon, voluntarily spilling water to decrease the number of downstream migrants that pass through turbines, modifying dam operations to provide more constant flow and providing additional flow from storage reservoirs to create more natural flow through areas inundated by dams. Construction of hatcheries to offset losses in habitat for wild fish has also occurred. Further, for salmon from the Snake River, the largest tributary to the Columbia River, a large percent of juvenile salmon smolts are collected at upstream dams and transported in barges to the lower river to avoid passage through dams, turbines, and reservoirs. Experiences in the Columbia River suggest that the sum of all of these actions may keep salmon stocks from going extinct, but the technological fixes will not likely provide complete mitigation for altered freshwater ecosystems. Guest editors: R. L. Welcomme & G. Marmulla Hydropower, Flood Control and Water Abstraction: Implications for Fish and Fisheries  相似文献   

4.
Survival of migrating salmon smolts in large rivers with and without dams   总被引:1,自引:0,他引:1  
The mortality of salmon smolts during their migration out of freshwater and into the ocean has been difficult to measure. In the Columbia River, which has an extensive network of hydroelectric dams, the decline in abundance of adult salmon returning from the ocean since the late 1970s has been ascribed in large measure to the presence of the dams, although the completion of the hydropower system occurred at the same time as large-scale shifts in ocean climate, as measured by climate indices such as the Pacific Decadal Oscillation. We measured the survival of salmon smolts during their migration to sea using elements of the large-scale acoustic telemetry system, the Pacific Ocean Shelf Tracking (POST) array. Survival measurements using acoustic tags were comparable to those obtained independently using the Passive Integrated Transponder (PIT) tag system, which is operational at Columbia and Snake River dams. Because the technology underlying the POST array works in both freshwater and the ocean, it is therefore possible to extend the measurement of survival to large rivers lacking dams, such as the Fraser, and to also extend the measurement of survival to the lower Columbia River and estuary, where there are no dams. Of particular note, survival during the downstream migration of at least some endangered Columbia and Snake River Chinook and steelhead stocks appears to be as high or higher than that of the same species migrating out of the Fraser River in Canada, which lacks dams. Equally surprising, smolt survival during migration through the hydrosystem, when scaled by either the time or distance migrated, is higher than in the lower Columbia River and estuary where dams are absent. Our results raise important questions regarding the factors that are preventing the recovery of salmon stocks in the Columbia and the future health of stocks in the Fraser River.  相似文献   

5.
Almost all large rivers worldwide are fragmented by dams, and their impacts have been modeled using the serial discontinuity concept (SDC), a series of predictions regarding responses of key biotic and abiotic variables. We evaluated the effects of damming on anuran communities along a 245‐km river corridor by conducting repeated, time‐constrained anuran calling surveys at 42 locations along the Broad and Pacolet Rivers in South Carolina, USA. Using a hierarchical Bayesian analysis, we test the biodiversity prediction of the SDC (modified for floodplain rivers) by evaluating anuran occupancy and species diversity relative to dams and degree of urbanized land use. The mean response of the anuran community indicated that occupancy and species richness were maximized when sites were farther downstream from dams. Sites at the farthest distances downstream of dams (47.5 km) had an estimated ~3 more species than those just below dams. Similarly, species‐specific occupancy estimates showed a trend of higher occupancy downstream from dams. Therefore, using empirical estimation within the context of a 245‐km river riparian landscape, our study supports SDC predictions for a meandering river. We demonstrate that with increasing distance downstream from dams, riparian anuran communities have higher species richness. Reduced species richness immediately downstream of dams is likely driven by alterations in flow regime that reduce or eliminate flows which sustain riparian wetlands that serve as anuran breeding habitat. Therefore, to maintain anuran biodiversity, we suggest that flow regulation should be managed to ensure water releases inundate riparian wetlands during amphibian breeding seasons and aseasonal releases, which can displace adults, larvae, and eggs, are avoided. These outcomes could be achieved by emulating pre‐dam seasonal discharge data, mirroring discharge of an undammed tributary within the focal watershed, or by basing real‐time flow releases on current environmental conditions.  相似文献   

6.
Two populations of the lichen Lobaria pulmonaria. growing on aspens and goat willows in 12 and 20 km2 study areas of boreal forest in Finland, were surveyed thoroughly to investigate the factors influencing the spatial distribution of the lichen. In one study area, where forestry has been intensive and old-growth forest is highly fragmented, L, pulmonaria was sparse and grew mostly on willows. In contrast, a large and continuous virgin forest area supported a higher incidence of L. pulmonaria. with the lichen being common on both aspens and willows. In both study areas, the distributions of aspen and willow were clumped over the scales of 100-1000 m. The spatial pattern of L pulmonaria was more clumped in the managed forest than in the virgin forest. The reduced incidence of the lichen on aspens in the managed area was attributed to a disruption of habitat continuity and small average tree size. There was no comparable reduction in the incidence on willows, probably because the willow had a very aggregated distribution in the managed area, which probably facililated local colonization of the lichen. Presence of the lichen was significantly related to size-corrected local density of aspen and willow trees as well as to spatial connectivity to neighboring lichen-occupied trees.  相似文献   

7.
1. The creation and maintenance of spatial and temporal heterogeneity by rivers flowing through floodplain landscapes has been disrupted worldwide by dams and water diversions. Large reservoirs ( novel ecosystems ) now separate and isolate remnant floodplains ( relict ecosystems ). From above, these appear as a string of beads, with beads of different sizes and string connections of varying lengths.
2. Numerous studies have documented or forecast sharp declines in riparian biodiversity in relict ecosystems downstream from dams. Concurrently, novel ecosystems containing species and communities of the former predam ecosystems have arisen along all regulated rivers. These result from the creation of new environments caused by upper reservoir sedimentation, tributary sedimentation and the formation of reservoir shorelines.
3. The contribution of novel habitats to the overall biodiversity of regulated rivers has been poorly studied. Novel ecosystems may become relatively more important in supporting riverine biodiversity if relict ecosystems are not restored to predam levels. The Missouri River of the north-central U.S.A. is used to illustrate existing conditions on a large, regulated river system with a mixture of relict and novel ecosystems.  相似文献   

8.
The study assessed the impact of damming on water quality and macroinvertebrate assemblages. It also assessed the response of macroinvertebrate‐based indices of water quality to damming. Macroinvertebrate community and physicochemical variables data were collected from 86 sites. Twenty‐nine sites downstream of dams were compared with 27 sites above impoundments and 30 sites on nearby unregulated streams. Of the downstream sites, 13 were situated <1 km from a dam while the other 16 were situated >1 km from a dam. A decrease in temperature, dissolved oxygen, conductivity and total dissolved solids was observed in sites immediately downstream of impoundments. Macroinvertebrate community structure and South African Scoring System (SASS) scores closely followed the damming‐induced changes in water quality. However, water quality variables, macroinvertebrate community structure and SASS scores reverted back to typical upstream conditions in distances around 1 km from dams. Stream recovery from dam‐induced changes was demonstrated with streams recovering at distances around 1 km from the point of regulation in corroboration with predictions of the serial discontinuity concept (SDC). These dam‐induced changes also reflected themselves in SASS scores suggesting potential usefulness of SASS in monitoring ecological integrity of tropical rivers following disturbances like damming.  相似文献   

9.
Synopsis Hatchery-reared Atlantic salmon returning as adults to Maine's Penobscot River drainage basin were tagged with radio transmitters to permit long-term observation of their movements. Locations of salmon carrying small stomachemplaced transmitters were periodically determined primarily from an airplane; canoes and road vehicles were also used. Objectives were to determine the patterns, routes and rates of salmon movement; to assess the effect of dams on the migration; and to compare the behavior of salmon that had been imprinted as smolts to headwaters with that of salmon released as smolts near the head of tide. No consistent pattern of salmon movement emerged. Movement was erratic with wandering both up and downstream interspersed with position holding. A weak seasonal aspect to the movement was detected, with the minimum numbers moving in early September and the rates and distances of movement decreasing as the season progressed. Salmon often remained at various locations in the rivers for periods of time before subsequently moving. Salmon were also apparently impeded by dams, as on numerous occasions they were observed to approach a dam, then move back downstream. Some differences in behavior were found between the salmon imprinted as smolts to headwaters and those released as smolts at head of tide. Several imprinted salmon homed to a particular tributary when unimpeded by dams or homed by surmounting a dam, and several moved up to the base of the dam. Few unimprinted salmon moved up that tributary. The variable behavior and lack of strong upstream movement may be due to the salmon's lack of genome adapted to the Penobscot River drainage, the scarcity of conspecifics with their possible pheromonal influence, and the lack of a home stream and concomitant motivation to stimulate unimprinted salmon to progress upstream.  相似文献   

10.
Interior Least Terns (Sternula antillarum) (ILT) are colonial, fish‐eating birds that breed within active channels of large sand bed rivers of the Great Plains and in the Lower Mississippi Valley. Multipurpose dams, irrigation structures, and engineered navigation systems have been present on these rivers for many decades. Despite severe alteration of channels and flow regimes, regulation era floods have remained effective at maintaining bare sandbar nesting habitat on many river segments and ILT populations have been stable or expanding since they were listed as endangered in 1985. We used ILT breeding colony locations from 2002 to 2012 and dispersal information to identify 16 populations and 48 subpopulations. More than 90% of ILT and >83% of river km with suitable nesting habitat occur within the two largest populations. However, replicate populations remain throughout the entire historical, geophysical, and ecological range of ILT. Rapid colonization of anthropogenic habitats in areas that were not historically occupied suggests metapopulation dynamics. The highest likelihood of demographic connectivity among ILT populations occurs across the Southern Plains and the Lower Mississippi River, which may be demographically connected with Least Tern populations on the Gulf Coast. Paired ecological and bird population models are needed to test whether previously articulated threats limit ILT population growth and to determine if management intervention is necessary and where. Given current knowledge, the largest sources of model uncertainty will be: (1) uncertainty in relationships between high flow events and subsequent sandbar characteristics and (2) uncertainty regarding the frequency of dispersal among population subunits. We recommend research strategies to reduce these uncertainties.  相似文献   

11.
海河流域水体沉积物碳、氮、磷分布与污染评价   总被引:1,自引:1,他引:0  
从全流域尺度上研究海河流域水体沉积物碳、氮、磷元素含量与分布特征,对研究海河流域水环境污染现状具有重要意义.本研究采集海河流域河流与水库163个表层沉积物(0~10 cm)样品,测定沉积物有机碳(TOC)、总氮(TN)、总磷(TP)的含量,运用有机指数与有机氮方法评价沉积物污染状况.结果表明: 海河流域沉积物TOC、TN、TP含量具有较大的空间异质性,下游平原区明显高于山区,北四河下游平原、黑龙港及运东平原含量较高,永定河山区、北三河山区、滦河流域含量相对较低,河流沉积物TOC含量显著高于水库沉积物,而TN、TP含量与水库沉积物没有显著差异.TN与TOC、TP含量呈显著正相关(r=0.704,P<0.01;r=0.250,P<0.01).全流域有机指数总体属于“较清洁”水平,北四河下游平原总体已接近有机污染水平.全流域有机氮总体处在“尚清洁”水平,北四河下游平原、黑龙港及运东平原流域存在有机氮污染.海河流域河流、水库沉积物具有相似的污染强度.沉积物C/N平均值为12.71,表明TOC多来源于藻类等浮游动植物,其次是高等植物,水库C/N值比河流高,陆源物质输入对水库沉积物TOC的贡献比对河流大.  相似文献   

12.
Huge dams (installed capacity > 100 MKW) are generally built on large rivers that display high biodiversity and include major migration routes for many diadromous and potamodromous fish. As a result, these dams lead to severe ecological impacts and receive more attention than smaller dams. Most previous work on the impact of huge dams on fish downstream movement has focused on a single dam and reservoir, so little is known about the effect of cascaded huge dams and reservoirs on downstream movement. During the period 2012–2014, two huge dams (the Xiangjiaba and the Xiluodu) were constructed on the upper Yangtze River and the reservoir impoundments began, respectively in October 2012 and May 2013. These cascaded hydroelectric projects could have a large adverse effect on the downstream movement of an important potamodromous fish species, Coreius guichenoti. To study the effect of cascaded impact of sequential huge dams and reservoirs on passive and active downstream movement of C. guichenoti, eggs and larvae were collected in the Yibin section during 2012–2014 and fish were collected monthly at a site in the Hejiang section from June 2012 to July 2014. Our results showed that, compared to one huge reservoir and dam, cascaded dams exert a more serious effect and obstruct downstream movement of eggs, larvae and young fish (particularly the yearlings and two-year-olds) of C. guichenoti. Individual C. guichenoti were able to pass with relative ease through one reservoir and dam, but passing through both reservoirs and dams was very difficult. To allow access to the spawning grounds upstream, a fish passage should be built on the Xiluodu dam. However, due to the hydropower development in the whole upper basin, captive breeding and maintaining at least 60 km of riverine habitat upstream of a spawning ground could be a more cost-effective approach to maintaining C. guichenoti populations in the Upper Yangtze River.  相似文献   

13.
The ecological responses of aquatic macrophytes and benthic macroinvertebrates to deep-release dams in three impounded rivers of the Henares River Basin (Central Spain) were studied, specially focusing on the effects of nutrient enrichment caused by deep releases on these two freshwater communities. Three sampling sites, one upstream and two downstream from the reservoir, were established in each impounded river. Sampling surveys to collect submersed macrophytes and benthic macroinvertebrates at each sampling site were carried out in spring–summer of 2009 and 2011. Water temperature tended to decrease downstream from dams, whereas nitrate and phosphate concentrations tended to increase. These abiotic changes, particularly the downstream nutrient enrichment, apparently affected the macrophyte and macroinvertebrate communities. In the case of submersed macrophytes, total coverage and taxa richness increased downstream from dams. In the case of benthic macroinvertebrates, total density and total biomass also increased downstream, but taxa richness tended to decrease. Scrapers appeared to be the macroinvertebrate feeding group most favored downstream from dams as a probable consequence of the positive effect of nutrient enrichment on periphyton and perilithon abundance. Nutrients would ultimately come from water runoff over agricultural lands and over semi-natural forests and pastures, being subsequently accumulated in the hypolimnion of reservoirs.  相似文献   

14.
We evaluated willow removal as a technique for enhancing habitat for birds of braided rivers by monitoring five bird species at three sites in the Mackenzie Basin, New Zealand, from 1991 to 1994 Four species—banded dotterel (Charadrius bicinctus), pied stilt (Himantopus novaezelandiae), black- fronted tern (Sterna albostriata) and South Island pied oystercatcher (Haematopus ostralegus) used the areas of riverbed cleared of willows for nesting and foraging, at the same or greater density than other areas of riverbed already free from willows. Wrybills (Anarhynchus frontalis) were occasionally seen in cleared areas of riverbed but were not nesting there during the study. Densities of banded dotterel and wrybill were lowest at sites with the greatest densities of willows, and only three out of 327 monitored nests were located in willow habitat. Nest predation rates did not differ significantly among sites with differing levels of willow infestation, nor did they differ between areas of cleared riverbed and riverbed already free from willow. In addition to weed control, predator control may be necessary to increase bird populations. This study indicates that willow removal increases foraging and nesting habitat for some river bird populations, but further surveys are necessary to assess whether willow removal has any long-term benefits.  相似文献   

15.
The damming of rivers and streams alters downstream habitat characteristics and biotic assemblages, and might thus alter stream functioning, although there is not much direct evidence of this impact. In this study we compared breakdown of alder leaves upstream and downstream from 4 small (<1 hm3) dams in 4 Mediterranean mountain streams with no appreciable impact on water temperature and nutrient concentrations. Despite no effect on water characteristics, dams decreased leaf litter breakdown rates. Abundance and biomass of invertebrates and shredders and hyphomycete sporulation rates did not differ between upstream and downstream bags. However, the structure of invertebrate and hyphomycete assemblages did. Especially evident was a drop in limnephilids, which might explain the slower breakdown of leaf litter below dams. These results may help to explain some of the variability found in the literature on the effects of dams on decomposition rates. If dams increase water temperature and nutrient concentrations they may promote faster decomposition, but if dams do not change water characteristics, their impact on detritivore communities may cause slower decomposition rates.  相似文献   

16.
17.
Periphyton and benthic invertebrates assemblages were studied at the confluence of two Rocky Mountain streams, Deer Creek and the Snake River near Montezuma, Colorado. Upstream from the confluence the Snake River is acidic and enriched in dissolved trace metals, while Deer Creek is a typical Rocky Mountain stream. In the Snake River, downstream from the confluence, the pH increases and hydrous metal oxides precipitate and cover the streambed. The algal and benthic invertebrate communities in the upstream reaches of the Snake River and in Deer Creek were very different. A liverwort, Scapania undulata var. undulata, was abundant in the Snake River, and although periphyton were very sparse, there were as many benthic invertebrates as in Deer Creek. Downstream from the confleunce, the precipitation of hydrous metal oxides greatly decreased the abundance of periphyton and benthic invertebrates. This study shows that in streams metal precipitates covering the streambed may have a more deleterious effect on stream communities than high metal-ion activities.  相似文献   

18.
  1. Flow regulation is a prolific and growing influence on rivers world-wide. Nine cascade hydropower dams were constructed along the 1,150-km Wujiang River in China over the past 30 years, disrupting longitudinal continuity. Water level fluctuations in the associated reservoirs range between daily, weekly, seasonal, and annual, depending on the type of regulation, but the comparative impacts of these regimes on plant growth strategies, or the extent of their downstream influence, is unknown.
  2. Competitor, stress-tolerator, and ruderal (CSR) plant strategies were used to assess the impact of reservoir regulation type on the riparian herbaceous plant community based on sampling the inundation zone of nine reservoirs and their downstream river reaches during 2017 and 2018.
  3. Our results revealed profound differences in CSR plant strategies of the dominant vegetation with respect to water level regime. While ruderal plants dominated (45%–60% of species), irrespective of regulation type, vegetation in reservoirs exhibited a strong shift from stress-tolerators (e.g., Cynodon dactylon, C-11.9:S-41.5:R-46.5%) to competitors (e.g., Reynoutria japonica, C-77.9:S-0:R-22.0%) with increasing intensity of water level fluctuation, reflecting the shift from annual to daily regulation. The width of the inundation zone was the best overall variable in explaining the CSR strategies of riparian vegetation, both in the reservoir inundation zone (r2-adj = 15.4%) and the downstream river (r2-adj = 7.3%). Retention time significantly explained variation in CSR plant strategies in the reservoir inundation zone (r2-adj = 3.7%, p = 0.002) but not downstream (p > 0.01). There was also a clear scale dependency of CSR plant strategies, with an increase in stress tolerators (average slope = 0.7%/km) and decline of competitor (average slope = −0.3%/km) and ruderal plants (average slope = −0.9%/km) with increasing distance downstream from dams.
  4. The growth strategies of the dominant riparian vegetation changed with the magnitude and frequency of water level fluctuations caused by differences in regulation type, and local environmental conditions. Clear scale dependency in the CSR plant strategies was observed with distance from the dam, with ruderals dominating closest to the reservoirs and declining gradually downstream as stress tolerators increased.
  5. Our study helps to evaluate the impact of river damming on the functional traits of riparian vegetation and to predict the resilience and restoration potential of riparian vegetation under different forms of human disturbance.
  相似文献   

19.
The Lancang-Mekong River basin contains a diverse assemblage of freshwater fish species; however, their populations are threatened by current and planned dam construction along the river. Fish assemblages are sensitive indicators of environmental degradation and can be used to assess aquatic ecosystem health. This research compared the fish fauna at the Xiaowan hydropower dam located on the middle reaches of the Lancang-Mekong River at three time periods: in 2008 (before impoundment), 2010 (water storage) and 2011 (full operation). A modified fish index of biological integrity (modified F-IBI) was developed and it synthesized information on the taxonomic composition, trophic guilds, and tolerance levels of the fish and habitat diversity to quantitatively assess the condition of fish populations before and after damming. This index also was used to assess the longitudinal diversity of the fish fauna along the river channel and could assess the barrier effect associated with the dam. Jaccard's index of similarity was used as a feasible tool to assess fish diversity loss and biotic homogenization. The analysis clearly showed a homogenization of the fish communities after damming, and the reservoir impoundment region showed much more serious homogenization than the downstream region. The Xiaowan dam had an immediate and profound effect on the fish fauna in this region of the Lancang-Mekong River. A total of eight cascading dams are planned for development in this region, and, unless conservation mitigation efforts are considered, the results could be devastating on the native fish populations of middle reaches of the Lancang-Mekong River basin.  相似文献   

20.
Understanding the impact of barriers and habitat fragmentation on the ecology and genetics of species is of broad interest to many biologists. In aquatic systems, hydroelectric dams often present an impenetrable barrier to migratory fish and can have negative effects on their persistence. Hydroelectric dams constructed in the Coquitlam and Alouette Rivers in the Fraser River drainage (British Columbia, Canada) in the early 1900s were thought to have led to complete loss of anadromous sockeye salmon from both rivers. For both reservoirs, recent water release programs resulted in the unexpected downstream migration of juvenile sockeye salmon and the subsequent upstream migration of adults towards the reservoir 2 years later. Here we investigate the evolutionary impact of dams on the sockeye salmon migration behavior by investigating the genetic distinction between migratory and non-migratory individuals within the Alouette and Coquitlam reservoirs. We also compare historical and contemporary genetic connectivity among 11 Lower Fraser River sockeye sites to infer recent population connectivity changes that might have been influenced by anthropogenic activities. Our molecular genetic analyses show a genetic distinction between the sea-run and resident individuals from the Coquitlam reservoir and population splitting time estimates suggest a very recent divergence between them. These results indicate a genetic component to migration behavior. For our broader survey from 11 sites, our comparisons suggest a general decline in gene flow, with a few interesting exceptions. In summary, our results suggest (i) early stage divergence between life history forms of sockeye salmon within one reservoir, and (ii) recent changes in genetic connectivity among Lower Fraser River populations; both of these results have potential recovery implications for historically migratory populations that were affected by anthropogenic barriers such as hydroelectric dams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号