首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the water channel protein aquaporin-1 (AQP1) is widely observed outside the rat brain in continuous, but not fenestrated, vascular endothelia, it has not previously been observed in any endothelia within the normal rat brain and only to a limited extent in the human brain. In this immunohistochemical study of rat brain, AQP1 has also been found in microvessel endothelia, probably of the fenestrated type, in all circumventricular organs (except the subcommissural organ and the vascular organ of the lamina terminalis): in the median eminence, pineal, subfornical organ, area postrema and choroid plexus. The majority of microvessels in the median eminence, pineal and choroid plexus, known to be exclusively fenestrated, are shown to be AQP1-immunoreactive. In the subfornical organ and area postrema in which many, but not all, microvessels are fenestrated, not all microvessels are AQP1-immunoreactive. In the AQP1-immunoreactive microvessels, the AQP1 probably facilitates water movement between blood and interstitium as one component of the normal fluxes that occur in these specialised sensory and secretory areas. AQP1-immunoreactive endothelia have also been seen in a small population of blood vessels in the cerebral parenchyma outside the circumventricular organs, similar to other observations in human brain. The proposed development of AQP1 modulators to treat various brain pathologies in which AQP1 plays a deleterious role will necessitate further work to determine the effect of such modulators on the normal function of the circumventricular organs.  相似文献   

2.
Ghrelin was isolated from the rat stomach as an endogenous ligand for the growth hormone secretagogue receptor (GHS-R) and has been found in the gastrointestinal tract of many vertebrates. Although the sequence and structure of chicken ghrelin has recently been determined, morphological characteristics of ghrelin cells in the chicken gastrointestinal tract are still obscure. In this study, we investigated ghrelin expression and distribution of ghrelin-producing cells in the hatching and adult chicken gastrointestinal tract by RT-PCR, immunohistochemistry and in situ hybridization. Ghrelin mRNA expression was observed mainly in the proventriculus in the hatching chicken and in the proventriculus, pylorus and duodenum of the adult chicken by RT-PCR. Ghrelin-immunopositive (ghrelin-ip) cells in the proventriculus were located at the mucosal layer but not in the myenteric plexus or smooth muscle layer. The number of ghrelin-ip cells in the adult chicken was greater than that in the hatching chicken. Interestingly, in the adult chicken, the number of ghrelin-ip cells were almost the same as that of ghrelin mRNA-expressing (ghrelin-ex) cells; however, in the hatching chicken, the number of ghrelin-ex cells was greater than that of ghrelin-ip cells. These results clearly demonstrate that ghrelin-producing cells exist in the chicken gastrointestinal tract, especially in the proventriculus, from hatching to adult stages of development, as well as in mammals.  相似文献   

3.
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease of the central nervous system (CNS) caused by autoantibodies (NMO‐IgG) against the water channel aquaporin‐4 (AQP4). Though AQP4 is also expressed outside the CNS, for example in skeletal muscle, patients with NMO generally do not show clinical/diagnostic evidence of skeletal muscle damage. Here, we have evaluated whether AQP4 supramolecular organization is at the basis of the different tissue susceptibility. Using immunofluorescence we found that while the sera of our cohort of patients with NMO gave typical perivascular staining in the CNS, they were largely negative in the skeletal muscle. This conclusion was obtained using human, rat and mouse skeletal muscle including the AQP4‐KO mouse. A biochemical analysis using a new size exclusion chromatography approach for AQP4 suprastructure fractionation revealed substantial differences in supramolecular AQP4 assemblies and isoform abundance between brain and skeletal muscle matching a lower binding affinity of NMO‐IgG to muscle compared to the brain. Super‐resolution microscopy analysis with g‐STED revealed different AQP4 organization in native tissues, while in the brain perivascular astrocyte endfoot membrane AQP4 was mainly organized in large interconnected and raft‐like clusters, in the sarcolemma of fast‐twitch fibres AQP4 aggregates often appeared as small, relatively isolated linear entities. In conclusion, our results provide evidence that AQP4 supramolecular structure is different in brain and skeletal muscle, which is likely to result in different tissues susceptibility to the NMO disease.  相似文献   

4.
Aquaporins: water channel proteins of the cell membrane   总被引:37,自引:0,他引:37  
Aquaporins (AQP) are integral membrane proteins that serve as channels in the transfer of water, and in some cases, small solutes across the membrane. They are conserved in bacteria, plants, and animals. Structural analyses of the molecules have revealed the presence of a pore in the center of each aquaporin molecule. In mammalian cells, more than 10 isoforms (AQP0-AQP10) have been identified so far. They are differentially expressed in many types of cells and tissues in the body. AQP0 is abundant in the lens. AQP1 is found in the blood vessels, kidney proximal tubules, eye, and ear. AQP2 is expressed in the kidney collecting ducts, where it shuttles between the intracellular storage sites and the plasma membrane under the control of antidiuretic hormone (ADH). Mutations of AQP2 result in diabetes insipidus. AQP3 is present in the kidney collecting ducts, epidermis, urinary, respiratory, and digestive tracts. AQP3 in organs other than the kidney may be involved in the supply of water to them. AQP4 is present in the brain astrocytes, eye, ear, skeletal muscle, stomach parietal cells, and kidney collecting ducts. AQP5 is in the secretory cells such as salivary, lacrimal, and sweat glands. AQP5 is also expressed in the ear and eye. AQP6 is localized intracellular vesicles in the kidney collecting duct cells. AQP7 is expressed in the adipocytes, testis, and kidney. AQP8 is expressed in the kidney, testis, and liver. AQP9 is present in the liver and leukocytes. AQP10 is expressed in the intestine. The diverse and characteristic distribution of aquaporins in the body suggests their important and specific roles in each organ.  相似文献   

5.
Glioblastomas are the most aggressive forms of primary brain tumors due to their tendency to invade surrounding healthy brain tissues, rendering them largely incurable. The water channel protein, Aquaporin-4 (AQP4) is a key molecule for maintaining water and ion homeostasis in the central nervous system and has recently been reported with cell survival except for its well-known function in brain edema. An increased AQP4 expression has been demonstrated in glioblastoma multiforme (GBM), suggesting it is also involved in malignant brain tumors. In this study, we show that siRNA-mediated down regulation of AQP4 induced glioblastoma cell apoptosis in vitro and in vivo. We further show that several apoptotic key proteins, Cytochrome C, Bcl-2 and Bad are involved in AQP4 signaling pathways. Our results indicate that AQP4 may serve as an anti-apoptosis target for therapy of glioblastoma.  相似文献   

6.
1. Gold thioglucose (GTG) was intraperitoneally injected into 10-day-old male and female chickens in a dose of 0, 0.2, 0.4 or 0.8 mg per gram of body wt. 2. Mortality of the GTG-injected chickens was 100% and 25% for doses of 0.8 and 0.4 mg/gBW respectively, in both sexes and 25% for a dose of 0.2 mg in females, which were all found within 14.5 hr after the GTG treatment. 3. Body weight gain, food consumption and food efficiency of surviving chickens for 23 days after the GTG injection were not affected by GTG in spite of dose level. 4. Gold detected in blood, heart, liver, gallbladder, spleen, proventriculus, gizzard, duodenum, kidney, pectoral muscle, small intestine, lung and brain of the dead chickens accumulated most highly in heart and followed by spleen, but in the surviving chicken a little gold was only found in liver, spleen and kidney of some GTG-treated chickens.  相似文献   

7.
The pathogenesis of neuromyelitis optica (NMO) involves binding of IgG autoantibodies (NMO-IgG) to aquaporin-4 (AQP4) on astrocytes in the central nervous system (CNS). We studied the in vivo processing in mice of a recombinant monoclonal human NMO-IgG that binds strongly to mouse AQP4. Following intravenous administration, serum [NMO-IgG] decreased with t1/2 ∼18 hours in wildtype mice and ∼41 hours in AQP4 knockout mice. NMO-IgG was localized to AQP4-expressing cell membranes in kidney (collecting duct), skeletal muscle, trachea (epithelial cells) and stomach (parietal cells). NMO-IgG was seen on astrocytes in the area postrema in brain, but not elsewhere in brain, spinal cord, optic nerve or retina. Intravenously administered NMO-IgG was also seen in brain following mechanical disruption of the blood-brain barrier. Selective cellular localization was not found for control (non-NMO) IgG, or for NMO-IgG in AQP4 knockout mice. NMO-IgG injected directly into brain parenchyma diffused over an area of ∼5 mm2 over 24 hours and targeted astrocyte foot-processes. Our data establish NMO-IgG pharmacokinetics and tissue distribution in mice. The rapid access of serum NMO-IgG to AQP4 in peripheral organs but not the CNS indicates that restricted antibody access cannot account for the absence of NMO pathology in peripheral organs.  相似文献   

8.
9.
Kitazawa T  Kaiya H  Taneike T 《Peptides》2007,28(3):617-624
Ghrelin is an endogenous ligand for growth hormone secretagogue receptor (GHS-R), and it stimulates growth hormone (GH) release, food intake and gastrointestinal motility in mammals. Ghrelin has also been identified in the chicken, but this peptide inhibits food intake in the chicken. We examined the effects of ghrelin and related peptides on contractility of the isolated chicken gastrointestinal tract in vitro. Among ghrelin-related peptides examined (1 microM of rat ghrelin, human ghrelin, chicken ghrelin and growth hormone releasing peptide-6 (GHRP-6)), only chicken ghrelin was effective on contraction of the chicken gastrointestinal tract. Des-acyl chicken ghrelin was ineffective, suggesting that octanoylation at Ser3 residue of chicken ghrelin was essential for inducing the contraction. Amplitude of chicken ghrelin-induced contraction was region-specific: highest in the crop and colon, moderate in the esophagus and proventriculus, and weak in the small intestine. The contractile response to chicken ghrelin in the crop was not affected by tetrodotoxin (TTX), but that in the proventriculus was decreased by TTX and atropine to the same extents. D-Lys3-GHRP-6 (a GHS-R antagonist) caused a transient contraction and inhibited the effect of chicken ghrelin without affecting the high-K+-induced contraction. Chicken ghrelin potentiated electrical field stimulation-induced cholinergic contraction without affecting the responsiveness to bath-applied carbachol in the proventriculus. The location of GHS-R differs in the crop (smooth muscle) and proventriculus (smooth muscle and enteric neurons). These results indicate that ghrelin has contractile activity on gastrointestinal tract in the chicken in vitro, and the effect was region-specific. The action would be mediated through the GHS-R, which is highly sensitive to chicken ghrelin.  相似文献   

10.
It is now over 10 years ago that aquaporin 1 (AQP1) was discovered and cloned from the red blood cells, and in 2003 the Nobel price in Chemistry was awarded to Pr. Peter Agre for his work on AQPs, highlighting the importance of these proteins in life sciences. AQPs are water channels. To date this protein family is composed of 11 sub-types in mammalians. Three main AQPs described in the mammalian brain are AQP1, AQP4 and AQP9. Several recent studies have shown that these channels are implicated in numerous physiological functions. AQP1 has a role in cerebrospinal fluid formation, whereas AQP4 is involved in water homeostasis and extracellular osmotic pressure in brain parenchyma. AQP4 seems also to have an important function in oedema formation after brain trauma or brain ischemia. AQP9 is implicated in brain energy metabolism. The level of expression of each AQP is highly regulated. After a trauma or an ischemia perturbation of the central nervous system, the level of expression of each AQP is differentially modified, resulting in facilitating oedema formation. At present, the exact role of each AQP is not yet determined. A better understanding of the mechanisms of AQP regulation should permit the development of new pharmacological strategies to prevent oedema formation. AQP9 has been recently specifically detected in the catecholaminergic neurons of the brain. This new result strengthens the hypothesis that the AQPs are not only water channels, but that some AQPs may play a role in energy metabolism as metabolite channels.  相似文献   

11.
12.
The molecular composition of square arrays   总被引:2,自引:0,他引:2  
Sorbo JG  Moe SE  Ottersen OP  Holen T 《Biochemistry》2008,47(8):2631-2637
Square arrays are prominent structures in plasma membranes of brain, muscle, and kidneys with an unknown function. So far, the analysis of these arrays has been restricted to freeze fracture preparations, which have shown square arrays to contain the water channel Aquaporin-4 (AQP4). Using Blue-Native PAGE immunoblots, we provide evidence that higher-order AQP4 complexes correspond to square arrays, with the AQP4 isoform M23 playing a dominant role. Our data are consistent with the idea that square arrays consist of aggregates of AQP4 tetramers complexed with multiples of dimers. By comparison, Aquaporin-1 and Aquaporin-9 form tetramers, but not higher-order complexes. AQP4 square arrays are stable under several biochemical purification steps. Analyzing the internal composition of the higher-order complexes by 2D gels, we demonstrate that the square arrays in addition to M23 also invariably contain AQP4, M1, and a novel AQP4 isoform that we call Mz. The visualization AQP4 square arrays by a rapid, biochemical assay provides new insight in the molecular organization of square arrays and gives further proof of the heterogeneity of AQP4 square arrays in vivo.  相似文献   

13.
In the brain, the astroglial syncytium is crucially involved in the regulation of water homeostasis. Accumulating evidence indicates that a dysregulation of the astrocytic processes controlling water homeostasis has a pathogenetic role in several brain injuries. Here, we have analysed by RNA interference technology the functional interactions occurring between the most abundant water channel in the brain, aquaporin-4 (AQP4), and the swelling-activated Cl(-) current expressed by cultured rat cortical astrocytes. We show that in primary cultured rat cortical astrocytes transfected with control small interfering RNA (siRNA), hypotonic shock promotes an increase in cellular volume accompanied by augmented membrane conductance mediated by volume-regulated anion channels (VRAC). Conversely, astroglia in which AQP4 was knocked down (AQP4 KD) by transfection with AQP4 siRNA changed their morphology from polygonal to process-bearing, and displayed normal cell swelling but reduced VRAC activity. Pharmacological manipulations of actin cytoskeleton in rat astrocytes, and functional analysis in mouse astroglial cells, which retain their morphology upon knockdown of AQP4, suggest that stellation of AQP4 KD rat cortical astrocytes was not causally linked to reduction of VRAC current. Molecular analysis of possible candidates of swelling-activated Cl(-) current provided evidence that in AQP4 KD astrocytes, there was a down-regulation of chloride channel-2 (CIC-2), which, however, was not involved in VRAC conductance. Inclusion of ATP in the intracellular saline restored VRAC activity upon hypotonicity. Collectively, these results support the view that in cultured astroglial cells, plasma membrane proteins involved in cell volume homeostasis are assembled in a functional platform.  相似文献   

14.
Aquaporin-4 (AQP4) is a water transport protein expressed in glial cell plasma membranes, including glial cell foot processes lining the blood-brain barrier. AQP4 deletion in mice reduces cytotoxic brain edema produced by different pathologies. To determine whether AQP4 is rate-limiting for brain water accumulation and whether altered AQP4 expression, as occurs in various pathologies, could have functional importance, we generated mice that overexpressed AQP4 in brain glial cells by a transgenic approach using the glial fibrillary acid protein promoter. Overexpression of AQP4 protein in brain by approximately 2.3-fold did not affect mouse survival, appearance, or behavior, nor did it affect brain anatomy or intracranial pressure (ICP). However, following acute water intoxication produced by intraperitoneal water injection, AQP4-overexpressing mice had an accelerated progression of cytotoxic brain swelling, with ICP elevation of 20 +/- 2 mmHg at 10 min, often producing brain herniation and death. In contrast, ICP elevation was 14 +/- 2 mmHg at 10 min in control mice and 9.8 +/- 2 mmHg in AQP4 knock-out mice. The deduced increase in brain water content correlated linearly with brain AQP4 protein expression. We conclude that AQP4 expression is rate-limiting for brain water accumulation, and thus, that altered AQP4 expression can be functionally significant.  相似文献   

15.
Aquaporin-4 (AQP4) is expressed in astrocytes throughout the central nervous system, particularly at the blood-brain and brain-cerebrospinal fluid barriers. Phenotype analysis of transgenic mice lacking AQP4 has provided compelling evidence for involvement of AQP4 in cerebral water balance, astrocyte migration, and neural signal transduction. AQP4-null mice have reduced brain swelling and improved neurological outcome in models of (cellular) cytotoxic cerebral edema including water intoxication, focal cerebral ischemia, and bacterial meningitis. However, brain swelling and clinical outcome are worse in AQP4-null mice in models of vasogenic (fluid leak) edema including cortical freeze-injury, brain tumor, brain abscess and hydrocephalus, probably due to impaired AQP4-dependent brain water clearance. AQP4 deficiency or knock-down slows astrocyte migration in response to a chemotactic stimulus in vitro, and AQP4 deletion impairs glial scar progression following injury in vivo. AQP4-null mice also manifest reduced sound- and light-evoked potentials, and increased threshold and prolonged duration of induced seizures. Impaired K+ reuptake by astrocytes in AQP4 deficiency may account for the neural signal transduction phenotype. Based on these findings, we propose modulation of AQP4 expression or function as a novel therapeutic strategy for a variety of cerebral disorders including stroke, tumor, infection, hydrocephalus, epilepsy, and traumatic brain injury.  相似文献   

16.
Aquaporin-4 (AQP4) is expressed in astrocytes throughout the central nervous system, particularly at the blood-brain and brain-cerebrospinal fluid barriers. Phenotype analysis of transgenic mice lacking AQP4 has provided compelling evidence for involvement of AQP4 in cerebral water balance, astrocyte migration, and neural signal transduction. AQP4-null mice have reduced brain swelling and improved neurological outcome in models of (cellular) cytotoxic cerebral edema including water intoxication, focal cerebral ischemia, and bacterial meningitis. However, brain swelling and clinical outcome are worse in AQP4-null mice in models of vasogenic (fluid leak) edema including cortical freeze-injury, brain tumor, brain abscess and hydrocephalus, probably due to impaired AQP4-dependent brain water clearance. AQP4 deficiency or knock-down slows astrocyte migration in response to a chemotactic stimulus in vitro, and AQP4 deletion impairs glial scar progression following injury in vivo. AQP4-null mice also manifest reduced sound- and light-evoked potentials, and increased threshold and prolonged duration of induced seizures. Impaired K+ reuptake by astrocytes in AQP4 deficiency may account for the neural signal transduction phenotype. Based on these findings, we propose modulation of AQP4 expression or function as a novel therapeutic strategy for a variety of cerebral disorders including stroke, tumor, infection, hydrocephalus, epilepsy, and traumatic brain injury.  相似文献   

17.
The contractile effects of galanin on isolated longitudinal smooth muscle strips of pre-crop esophagus, proventriculus, duodenum, colon, and cecum of chickens were investigated. Application of galanin (5.0-100.0 nM) evoked strong contractions from the colon and cecum (hindgut), but evoked minimal responses from the pre-crop esophagus, proventriculus, and duodenum (foregut). Previous studies have demonstrated that the central administration of galanin stimulates food consumption in rats. Since galanin-like immunoreactivity is present in the chicken brain, we speculate that the central release of galanin may increase food intake and possibly be involved in a hypothalamic-colonic reflex modulating hindgut motility and generating a defecation. Thus, the results of this study demonstrate the presence of galanin receptors in the chicken gut and suggest a possible link with their functional presence in the hindgut to the chicken central nervous system.  相似文献   

18.
Expression of the aquaporin-4 (AQP4) water channel was systematically studied in the digestive tract of the guinea pig using Western blot and immunofluorescence techniques. The results showed that AQP4 was expressed widely in different segments of the guinea pig digestive tract. AQP4-immunoreactivity was confined to parietal cells in the stomach, and absorptive and glandular epithelial cells of small and large intestine. AQP4 protein was also expressed by enteric glial cells of submucosal and myenteric ganglia and primary nerve trunks. AQP4 was expressed by both type I and type II enteric gliocytes, but not by type III or type IV enteric gliocytes, indicating that enteric gliocytes have a heterogeneous distribution in the gut wall. In addition, different patterns of AQP4 expression in the enteric nervous system of human, guinea pig, rat and mouse colon mucosa were identified: in rat and mouse AQP4 was localised to a small subpopulation of neurons; in the guinea pig AQP4 was localised to enteric glial cells; and in the human colon mucosa, AQP4 was also detected mainly in the glial cells. It has been speculated that AQP4 may be involved in water transport in the gastrointestinal tract. Its role in enteric neurons and glia is unknown, but, by analogy with the brain, AQP4 may be involved in the formation and resolution of edema.  相似文献   

19.
北京鸭消化道内分泌细胞的免疫组织化学研究   总被引:32,自引:3,他引:32  
应用七种消化道激素抗血清,对北京鸭消化道内分泌细胞进行了免疫组织化学定位,促胃素释放肽细胞大量分布于腺胃和肌胃。生长抑素细胞在腺胃和肌胃数量很多,在幽门部密集,且偶见于十地二指肠,胃素细胞在幽门部非常密集,并较多分布于整个小肠,肌胃内亦有少量。5-羟色胺细胞大量见于肠管各段,并偶见于幽门,少量胰多肽细胞见于腺胃、十二指肠和空肠,未检出胃动素和抑胃肽细胞。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号