首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the kinetic parameters for interaction of epidermal growth factor (EGF) with fetal rat lung (FRL) cells under two sets of experimental conditions and applied sensitivity analysis to see which parameters were well-defined. In the first set of experiments (method 1), the kinetics of internalization and dissociation of radiolabeled EGF were measured with a temperature-shift protocol in medium initially devoid of free ligand. The initial concentration of radiolabeled EGF bound to the cell surface corresponded to levels of receptor occupancy ranging from approximately 200 receptors per cell to approximately 18,000 receptors per cell, a level at which EGF binding approaches saturation. In the second set of experiments (method 2), carried out at a constant temperature, we began with no surface-bound or internalized ligand. The initial free ligand concentration was varied from 0.2 to 50 ng/mL. In both sets of experiments, we measured surface-bound, internalized, and free 125I-EGF as functions of time and evaluated the parameters of a mathematical model of endocytosis. Sensitivity analysis showed that three rate constants were well-defined in this combination of two experimental approaches: ke, the endocytic rate constant; ka, the association rate constant; and kd, the dissociation rate constant. The endocytic parameter ke was found to be independent of initial surface receptor occupancy (method 1); there was some indication that it increased with initial free ligand concentration in method 2. Neither kd nor ka was found to change with extent of initial surface receptor occupancy or initial free ligand concentration, respectively, a finding of significance, since diffusion theory predicts these parameters will vary with surface receptor occupancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The nonspecific binding (equilibrium coefficient kn) of ligand (L) and/or the incomplete recovery (alpha < 1) of the receptor-ligand (RL) complex in binding measurements, could hamper accurate determination of the association and dissociation rate constants of the R/L system. For the simplest model of R/L interaction, characterized by a bimolecular association process (rate constant k1) and a monomolecular dissociation process (rate constant k2), the consequences of kn and/or alpha neglect on k1 and k2 determination were investigated. Various situations that are especially relevant for k1 determination, were examined in which nonspecific binding was: (i) negligible relative to specific binding, or (ii) developed progressively or very rapidly in association kinetics. When only the initial kinetic phase was used, according to the situation (i.e. the nonspecific binding characteristics, and the fact that kn and/or alpha were or were not taken into account to correct the binding measurements), k1 could be accurately determined or generally slightly overestimated or slightly underestimated (in the two latter cases by factors involving mainly kn and/or alpha but not the R concentration or the R/L equilibrium association constant, K), whereas k2 should always be fairly well estimated. Consequently, for the simplest R/L systems, the k1/k2 ratio derived from such kinetic experiments should be much less susceptible to substantial underestimation than K derived from R saturation experiments [Borgna, J. Steroid Biochem. Mol. Biol. (2004)]. Kinetic experiments could also be more appropriate than R saturation experiments to detect cooperative--positive or negative--binding of L to R.  相似文献   

3.
Receptors for the nerve growth factor protein (NGF) have been isolated from three cell types [embryonic chicken sensory neurons (dorsal root sensory ganglia; DRG), rat pheochromocytoma (PC12) and human neuroblastoma (LAN-1) cells] and have been shown to be similar with respect to equilibrium dissociation constants. The present results demonstrate that there are multiple molecular weight species for NGF receptors from DRG neurons and PC12 cells. NGF receptors can be isolated from DRG as four different molecular species of 228, 187, 125, and 112 kilodaltons, and PC12 cells as three molecular species of 203, 118, and 107 kilodaltons. The NGF receptors isolated from DRG show different pH-binding profiles for high- and low-affinity binding. High-affinity binding displays a bell-shaped pH profile with maximum binding between pH 7.0 and 7.9, whereas low-affinity binding is constant between pH 5.0 and 9.1, with a twofold greater binding at pH 3.6. At 22 degrees C, the association rate constant was found to be 9.5 +/- 1.0 X 10(6) M-1 s-1. Two dissociation rate constants were observed. The fast dissociating receptor has a dissociation rate constant of 3.0 +/- 1.5 X 10(-2) s-1, whereas the slow dissociating receptor constant was 2.4 +/- 1.0 X 10(-4) s-1. The equilibrium dissociation constants calculated from the ratio of dissociation to association rate constants are 2.5 X 109-11) M for the high-affinity receptor (type I) and 3.2 X 10(-9) M for the low-affinity receptor (type II). These values are the same as those determined by equilibrium experiments on the isolated receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The binding of human chorionic gonadotropin and human luteinizing hormone to particulate receptors of rat testes has generally been assumed to follow an equilibrium model similar to that proposed for many enzyme systems. Our work shows that equilibrium dissociation constant (Kd) and number of hormone binding sites (Bmax) are highly sensitive to changes in hormone and/or receptor concentration and to treatment received by tissue or receptor preparation prior to the assay. The results of binding assays obtained using receptor preparation pretreated with hormone (labeled as well as unlabeled) indicated that the binding reaction between hormone and receptor was irreversible and that pretreatment of the tissue with hormone greatly alters the number of high affinity gonadotropin binding sites in the testicular homogenate. Data from studies involving increasing receptor concentrations revealed that increasing the mass of particulate receptors in the binding assays leads to higher Kd as well as Bmax values. These findings are incompatible with a binding model based upon occupancy of receptor sites and the state of equilibrium implied. The incompatibilities are analyzed and an alternate model advanced (Bhalla, V.K., Trowbridge, C.G., Chen, C.J.H., Lindeman, J.G. and Rojas, F.J. (1979) Biochim. Biophys. Acta 584, 436--453).  相似文献   

5.
We introduce a novel experimental method to determine both the extent of ex vivo receptor occupancy of administered compound and its dissociation rate constant (k4). [Here, we reference k4 as the rate of offset of unlabeled ligand in convention with Motulsky and Mahan ()]. We derived a kinetic rate equation based on the dissociation rate constant for an unlabeled compound competing for the same site as a labeled compound and describe a model to simulate fractional occupancy. To validate our model, we performed in vitro kinetics and ex vivo occupancy experiments in rat cortex with varying concentrations of (R)-dimethindene, a sedating antihistamine. Brain tissue was removed at various times post oral administration, and histamine H1 receptor ligand [3H]-doxepin binding to homogenates from drug-treated or vehicle-treated rats was measured at multiple time points at room temperature. Fractional occupancy and k4 for (R)-dimethindene binding to H1 receptors were calculated by using our proposed model. Rats dosed with 30 and 60?mg/kg (R)-dimethindene showed 42% and 67% occupancy of central H1 receptors, respectively. These results were comparable to occupancy data determined by equilibrium radioligand binding. In addition, drug k4 rate determined by using our ex vivo method was equivalent to k4determined by in vitro competition kinetics (dissociation half-life t1/2 ~ 30?min). The outlined method can be used to assess, by simulation and experiment, occupancy for compounds based on dissociation rate constants and contributes to current efforts in drug optimization to profile antagonist efficacy in terms of its kinetic drug-target binding parameters. Data described by the method may be analyzed with commercially available software. Suggested fitting procedures are given in the appendix.  相似文献   

6.
The kinetics of the reaction between human chorionic gonadotropin (hCG) and specific gonadotropin receptors in the rat testis were determined at 24 and 37 degrees, over a wide range of hormone concentrations. Hormone concentrations were corrected for the binding activity of the (-125I)hCG tracer preparations. Analysis of the experimental data was performed with an interactive nonlinear curve fitting program, based upon the second-order chemical kinetic differential equation. The mean values for the association rate constant (k1) were 4.7 x 10-7 M-1 min-1 at 24 degrees, and 11.0 x 10-7 M-1 min-1 at 37 degrees. At both temperatures, the values of kl were independent of hormone concentration. Initial dissociation rates were consistent with first order kinetics, with dissociation rate constant (k2) of 1.7 x 10 minus -3 and 4.6 x 10 minus -3 min minus -1 at 24 and 37 degrees, respectively. When studied over longer periods at 24 degrees, the dissociation process appeared to be multiexponential. The kinetics of degradation of (-125I)hCG and receptors were determined at both temperatures, and a mathematical model was developed by modification of the second-order chemical kinetic differential equation to take these factors into account. The application of such a model to hCG kinetic binding data demonstrated that reactant degradation had little significant effect on the derivation of the association rate constant (k1), but caused significant overestimation of the dissociation rate constant (k2) values derived from association experiments. The model was also applied by computer simulation to a theoretical analysis of the effects of degradation of free hormone and receptor sites upon kinetic and steadystate binding data. By this method, the initial velocities of hormone binding were shown to be less affected by degradation than the steady-state levels of hormone-receptor complex. Also, reactant degradation in simulated steady-state experiments caused an underestimate of the apparent equilibrium association constant, but had relatively less effect on the determination of binding site concentration.  相似文献   

7.
1. Isolated rat fat cells were incubated at 37 degrees with [U-14C]-glucose 0.55 mM and 125I-labeled insulin. The amount of receptor-bound 125I-labeled insulin and the rate of insulin-induced 14C-lipid synthesis were assessed during association and dissociation of 125I-labeled insulin. 2. The rate of 14C-lipid synthesis was constant from zero time in the absence of insulin and in the presence of insulin in a high concentration (0.7 muM). With insulin in a low concentration (56 pM) the insulin-induced rate of 14C-lipid synthesis was proportional to the receptor occupancy; the receptor binding reached equilibrium and the rate of 14C-lipid synthesis reached a constant value after 30 to 45 min. With insulin in a concentration of 0.7 nM the rate of 14C-lipid synthesis reached a steady state before equilibrium of the receptor binding was obtained. 3. Ater preincubation with 56 pM 125I-labeled insulin followed by removal of extracellular insulin the decrease in the rate of insulin induced 14C-lipid synthesis followed the decrease in receptor occupancy with a half-time of about 10 min. After preincubation with insulin in concentrations of 0.28, 0.56, and 1.4 nM a maximum rate of 14C-lipid synthesis was maintained for about 8, 15, and 30 min, respectively. 4. The following model is suggested. Binding of insulin to the previously described receptors with a dissociation constant of about 3 nM (Gammeltoft, S., and Gliemann, J. (1973) Biochim. Biophys Acta 320, 16-32) represents the first step in the action of insulin on lipid synthesis from glucose. The receptor occupancy is rate-determining at low concentrations of insulin, i.e. when the occupancy is small (about 2 percent or less). At higher insulin concentrations some other step becomes rate-determining and the higher occupancy at equilibrium therefore causes no further increase in the steady state lipogenesis. However, a high receptor occupancy causes a prolonged maintenance of a maximal (or near-maximal) effect after removal of insulin from the medium.  相似文献   

8.
J Chen  Y Zhang  G Akk  S Sine    A Auerbach 《Biophysical journal》1995,69(3):849-859
Affinity labeling and mutagenesis studies have demonstrated that the conserved tyrosine Y190 of the acetylcholine receptor (AChR) alpha-subunit is a key determinant of the agonist binding site. Here we describe the binding and gating kinetics of embryonic mouse AChRs with mutations at Y190. In Y190F the dissociation constant for ACh binding to closed channels was reduced approximately 35-fold at the first binding site and only approximately 2-fold at the second site. At both binding sites the association and dissociation rate constants were decreased by the mutation. Compared with wildtype AChRs, doubly-liganded alpha Y190F receptors open 400 times more slowly but close only 2 times more rapidly. Considering the overall activation reaction (vacant-closed to fully occupied-open), there is an increase of approximately 6.4 kcal/mol caused by the Y-to-F mutation, of which at least 2.1 and 0.3 kcal/mol comes from altered agonist binding to the first and second binding sites, respectively. The closing rate constant of alpha Y190F receptors was the same with ACh, carbamoylcholine, or tetramethylammonium as the agonist. This rate constant was approximately 3 times faster in ACh-activated S, W, and T mutants. The equilibrium dissociation constant for channel block by ACh was approximately 2-fold lower in alpha Y190F receptors compared with in wildtype receptors, suggesting that there are changes in the pore region of the receptor as a consequence of the mutation. The activation reaction is discussed with regard to energy provided by agonist-receptor binding contacts, and by the intrinsic folding energy of the receptor.  相似文献   

9.
1. Intact synaptic acetylcholine receptors on freshly isolated rat skeletal-muscle fibres were characterized by their interaction with di-iodinated 125I-labelled alpha-bungarotoxin, acetylcholine and other cholinergic ligands at room temperature (22 deggrees C). 2. The time course and concentration dependence of 125I-labelled alpha-bungarotoxin association conformed to a bimolecular mechanism. In time-course experiments with different concentrations of 125I-labelled alpha-bungarotoxin (1.4--200 nM) the bimolecular-association rate constant, k + 1, was (2.27 +/- 0.49) x 10(4)M-1.S-1 (mean +/- S.D., N = 10). In concentration-dependence experiments, k + 1 was 2.10 x 10(4)M-1.S-1 and 1.74 x 10(4) M-1.S-1 with 10 and 135 min incubations respectively. In association experiments the first-order rate constant was proportional to the 125I-labelled alpha-bungarotoxin concentration. 125I-Labelled alpha-bungarotoxin dissociation was first order with a dissociation constant, k-1, less than or equal to 3 x 10(-6)S(-1) (half-life greater than or equal to 60 h.) The results indicated a single class of high-affinity toxin-binding sites at the end-plate with an equilibrium dissociation constant, Kd, equal to or less than 100 pM. The number of toxin-binding sites was (3.62 +/- 0.46) x 10(7) (mean +/- S.D., n = 22) per rat end-plate. 3. The apparent inhibitor dissociation constants, Ki, for reversible cholinergic ligands were determined by studying their effect at equilibrium on the rate of 125I-labelled alpha-bungarotoxin binding. There was heterogeneity of binding sites for cholinergic ligands, which were independent and non-interacting with antagonists. In contrast agonist affinity decreased with increasing receptor occupancy. Cholinergic ligands in excess inhibited over 90% of 125I-labelled alpha-bungarotoxin binding. 4. Cholinergic ligand binding was accompanied by an increase in entropy, which was greater for the agonist carbachol (delta So = +0.46 kJ.mol-1.K-1) than the antagonist tubocurarine (delta So = +0.26 kJ.mol-1.K-1). 5. The entropy and affinity changes that accompanied agonist binding suggested that agonists induced significant conformational changes in intact acetylcholine receptors. 6. The affinity and specificity of 125I-labelled alpha-bungarotoxin and tubocurarine binding to synaptic acetylcholine receptors from slow and fast muscle fibres were the same. 7. The study of binding only requires milligram amounts of tissue and may have application to other neurobiological studies and to the study of human neuromuscular disorders.  相似文献   

10.
The binding of human chorionic gonadotropin and human luteinizing hormone to particulate receptors of rat testes has generally been assumed to follow an equilibrium model similar to that proposed for many enzyme systems. Our work shows that equilibrium dissociation constant (Kd) and number of hormone binding sites (Bmax) are highly sensitive to changes in hormone and/ or receptor concentration and to treatment received by tissue or receptor preparation prior to the assay. The results of binding assays obtained using receptor preparation pretreated with hormone (labeled as well as unlabeled) indicated that the binding reaction between hormone and receptor was irreversible and that pretreatment of the tissue with hormone greatly alters the number of high affinity gonadotropin binding sites in the testicular homogenate. Data from studies involving increasing receptor concentrations revealed that increasing the mass of particulate receptors in the binding assays leads to higher Kd as well as Bmax values. These findings are incompatible with a binding model based upon occupancy of receptor sites and the state of equilibrium implied. The incompatibilities are analyzed and an alternate model advanced (Bhalla, V.K., Trowbridge, C.G., Chen, C.J.H., Lindeman, J.G. and Rojas, F.J. (1979) Biochim. Biophys. Acta 584, 436–453).  相似文献   

11.
Arc repressor is tetrameric when bound to operator DNA   总被引:10,自引:0,他引:10  
B M Brown  J U Bowie  R T Sauer 《Biochemistry》1990,29(51):11189-11195
The Arc repressor of bacteriophage P22 is a member of a family of DNA-binding proteins that use N-terminal residues in a beta-sheet conformation for operator recognition. Here, Arc is shown to bind to its operator site as a tetramer. When mixtures of Arc (53 residues) and an active variant of Arc (78 residues) are used in gel retardation experiments, five discrete protein-DNA complexes are observed. This result is as expected for operators bearing heterotetramers containing 4:0, 3:1, 2:2, 1:3, and 0:4 ratios of the two proteins. Direct measurements of binding stoichiometry support the conclusion that Arc binds to a single 21-base-pair operator site as a tetramer. The Arc-operator binding reaction is highly cooperative (Hill constant = 3.5) and involves at least two coupled equilibria. In the first reaction, two unfolded monomers interact to form a folded dimer (Bowie & Sauer, 1989a). Rapid dilution experiments indicate that the Arc dimer is the kinetically significant DNA-binding species and allow an estimate of the equilibrium dissociation constant for dimerization [K1 = 5 (+/- 3) x 10(-9) M]. The rate of association of Arc-operator complexes shows the expected second-order dependence on the concentration of free Arc dimers, with k2 = 2.8 (+/- 0.7) x 10(18) M-2 s-1. The dissociation of Arc-operator complexes is a first-order process with k-2 = 1.6 (+/- 0.6) x 10(-4) s-1. The ratio of these kinetic constants [K2 = 5.7 (+/- 2.3) x 10(-23) M2] provides an estimate for the equilibrium constant for dissociation of the DNA-bound tetramer to two free Arc dimers and the operator. An independent determination of this complex equilibrium constant [K2 = 7.8 (+/- 4.8) x 10(-23) M2] was obtained from equilibrium binding experiments.  相似文献   

12.
The binding of N-acetyl-beta-D-glucosaminidase to rat liver receptors was studied in the presence of chloroquine. The association rate constant was not affected in the presence of the drug, while the dissociation rate constant and consequently the equilibrium dissociation binding constant significatively decreased. This results may explain effects of chloroquine on lysosomal enzyme transport found in cultured cells by other authors.  相似文献   

13.
Lactogenic receptors from rat liver microsomal fraction ('microsomes') were extracted by treatment with 1% (w/v) Triton X-100. Triton X-100 exerts an inhibitory effect on both the binding reaction and the separation of the free hormone from the complex. The association and dissociation of 125I-labelled human somatotropin are time- and temperature-dependent processes. The association rate constant, k1, is 6.7 x 10(6) mol . litre-1 . min-1 at 25 decrees C, and the dissociation rate constant, k-1, is 1.1 x 10(-3) min-1 at 25 degrees C. Scatchard analysis of saturation data reveals the existence of a single class of receptors and that solubilization leads to a slight decrease in affinity and a sharp increase in binding capacity. The dissociation constant, Kd, of the solubilized preparation is 0.22 nM and the binding capacity 2900 fmol/mg of protein. Similar results were obtained from competition experiments. Binding of 125I-labelled human somatotropin to the solubilized receptors is specifically inhibited by hormones with lactogenic activity. Incubation of the solubilized preparation with trypsin resulted in an 80% decrease in binding activity. The solubilized form of the receptor has a slightly increased sensitivity to the inactivation by trypsin, heat and extremes of pH, with respect to the membrane-bound form.  相似文献   

14.
L J Maher  P B Dervan  B J Wold 《Biochemistry》1990,29(37):8820-8826
Pyrimidine oligonucleotides recognize extended purine sequences in the major groove of double-helical DNA by triple-helix formation. The resulting local triple helices are relatively stable and can block DNA recognition by sequence-specific DNA binding proteins such as restriction endonucleases. Association and dissociation kinetics for the oligodeoxyribonucleotide 5'-CTCTTTCCTCTCTTTTTCCCC (bold C's indicate 5-methylcytosine residues) are now measured with a restriction endonuclease protection assay. When oligonucleotides are present in greater than 10-fold excess over the DNA target site, the binding reaction kinetics are pseudo first order in oligonucleotide concentration. Under our standard conditions (37 degrees C, 25 mM Tris-acetate, pH 6.8, 70 mM sodium chloride, 20 mM magnesium chloride, 0.4 mM spermine tetrahydrochloride, 10 mM beta-mercaptoethanol, 0.1 mg/mL bovine serum albumin) the value of the observed pseudo-first-order association rate constant, k2obs, is 1.8 x 10(3) +/- 1.9 x 10(2) L.(mol of oligomer-1.s-1. Measurement of the dissociation rate constant yields an equilibrium dissociation constant of approximately 10 nM. Increasing sodium ion concentration slightly decreased the association rate, substantially increased the dissociation rate, and thereby reduced the equilibrium binding constant. This effect was reversible by increasing multivalent cation concentration, confirming the significant role of multivalent cations in oligonucleotide-directed triple-helix formation under these conditions. Finally, a small reduction in association rate, a large increase in dissociation rate, and a resulting reduction in the equilibrium binding constant were observed upon increasing the pH between 6.8 and 7.2.  相似文献   

15.
The kinetic mechanism of the binding and release of calcium by troponin and by the complexes troponin: tropomyosin, troponin:tropomyosin:actin, and troponin (TN)-tropomyosin (TM)-actin:myosin subfraction 1 (SF-1) was investigated using troponin labeled on the TN-I subunit with the fluorophore 4-(N-iodoac etoxyethyl-N-methyl)-7-nitrobenz-2-oxa-1,3-diazole. The apparent association constant is five to 10 times smaller for TN:TM:actin compared to TN:TM or TN and saturation of actin sites with SF-1 increased the binding constant approximately to the value for TN:TM. Kinetic measurements on TN or TN:TM fitted a single rate process for association or dissociation which is consistent with a model in which the calcium sites are equivalent and independent and each calcium induces a change in structure of the complex. TN:TM:actin gave biphasic transients for association and dissociation of calcium. The two binding sites are no longer equivalent and independent. The TN:TM:actin:SF-1 complex gave kinetic behavior essentially equivalent to TN:TM. The kinetics of calcium dissociation from the various complexes was also measured by the fluorescent calcium indicator quin 2, which gave the same values for the rate constants as for the labeled protein. The evidence is interpreted in terms of a model in which regulated actin can exist in two states and the binding of each calcium and SF-1 displaces the equilibrium between states. Formation of the complex of TN:TM with actin yielded an enhancement of the fluorescence of the labeled TN-I moiety of approximately 30%. The rate of constant for association of the complex decreased 6-fold in the presence of calcium while the rate constant for dissociation of the protein complex was essentially unchanged. Saturation of actin sites with SF-1 had no effect on the rate constant for association with TN:TM in the presence of calcium.  相似文献   

16.
G Akk  A Auerbach 《Biophysical journal》1996,70(6):2652-2658
The properties of adult mouse recombinant nicotinic acetylcholine receptors activated by acetylcholine (ACh+) or tetramethylammonium (TMA+) were examined at the single-channel level. The midpoint of the dose-response curve depended on the type of monovalent cation present in the extracellular solution. The shifts in the midpoint were apparent with both inward and outward currents, suggesting that the salient interaction is with the extracellular domain of the receptor. Kinetic modeling was used to estimate the rate constants for agonist binding and channel gating in both wild-type and mutant receptors exposed to Na+, K+, or Cs+. The results indicate that in adult receptors, the two binding sites have the same equilibrium dissociation constant for agonists. The agonist association rate constant was influenced by the ionic composition of the extracellular solution whereas the rate constants for agonist dissociation, channel opening, and channel closing were not. In low-ionic-strength solutions the apparent association rate constant increased in a manner that suggests that inorganic cations are competitive inhibitors of ACh+ binding. There was no evidence of an electrostatic potential at the transmitter binding site. The equilibrium dissociation constants for inorganic ions (Na+, 151 mM; K+, 92 mM; Cs+, 38 mM) and agonists (TMA+, 0.5 mM) indicate that the transmitter binding site is hydrophobic. Under physiological conditions, about half of the binding sites in resting receptors are occupied by Na+.  相似文献   

17.
Fluorescent derivatives of phalloidin are widely used to measure filamentous actin (F-actin) levels and to stabilize F-actin. We have characterized the kinetics and affinity of binding of tetramethylrhodaminyl (TRITC)-phalloidin to rabbit skeletal muscle F-actin and to F-actin in lysates of rabbit polymorphonuclear leukocytes (PMNs). We have defined conditions where TRITC-phalloidin can be used to inhibit F-actin depolymerization and to quantify F-actin without prior fixation. By equilibrium measurements, the affinity of TRITC-phalloidin binding to rabbit skeletal muscle F-actin (pyrene labeled) or to PMN lysate F-actin was 1-4 x 10(-7) M. In both cases, the stoichiometry of binding was approximately 1:1. Kinetic measurements of TRITC-phalloidin binding to PMN lysate F-actin resulted in an association rate constant of 420 +/- 120 M-1 sec-1 and a dissociation rate constant of 8.3 +/- 0.9 x 10(-5) sec-1. The affinity calculated from the kinetic measurements (2 +/- 1 x 10(-7) M) agreed well with that obtained by equilibrium measurements. The rate with which 0.6 microM TRITC-phalloidin inhibited 0.1 microM pyrenyl F-actin depolymerization (90% inhibition in 10 sec) was much faster than the rate of binding to pyrenyl F-actin (less than 1% bound in 10 sec), suggesting that phalloidin binds to filament ends more rapidly than to the rest of the filament. We show that TRITC-phalloidin can be used to measure F-actin levels in cell lysates when G-actin is also present (i.e., in cell lysates at high concentrations) if DNase I is included to prevent phalloidin-induced polymerization.  相似文献   

18.
R J Tallarida 《Life sciences》1988,43(26):2169-2176
Determinations of apparent equilibrium dissociation constants of drug-receptor interactions are made from both functional and radioligand binding studies. In each type of study, reversible reactions are assumed and the mass action law is applied. Functional studies are frequently used to determine the dissociation constant of a competitive antagonist but are less frequently used to obtain this constant for agonist compounds since the latter determination requires an experimental procedure that irreversibly inactivates a fraction of the receptors. In the present report, values of dissociation constant for prototype agonists and antagonists, determined from binding and from functional studies, are examined in two classical isolated preparations, rabbit aorta and guinea-pig ileum. In each preparation the dissociation constants from binding and functional experiments agree well for the antagonists but differ markedly for the agonists. Further, the dissociation constant values from binding are seen to be greater for the agonists than for the antagonists. When a chronic treatment regimen in the rabbit resulted in a pronounced change in the functional dissociation constant of subsequently administered norepinephrine, there was no significant change in either the binding constant of this agonist or in the pA2 value of the alpha antagonist, phentolamine. These, and the previously described results, are shown to be compatible with a simple two-state receptor model in which agonists bind with high and low affinity to each state while antagonists do not distinguish between the states. In this model, the ratio of low to high affinity states accounts for the failure of the binding procedure to detect changes in the agonists dissociation constant that are highly significant in the functional study. Whereas the model is based on data for these two classical preparations only, and may not be more generally applicable, the findings demonstrate the necessity for employing both functional and radioligand binding experiments when characterizing drug receptors.  相似文献   

19.
To examine the kinetics of opioid receptor binding, the agonists [D-Ala2-D-Leu5]enkephalin (DADL) and [D-Ala2-MePhe4-Gly-ol5]enkephalin (DAGO) and the antagonists diprenorphine and naltrexone were used with bovine hippocampal synaptic plasma membranes. By computer modeling of equilibrium binding displacement curves utilizing the LIGAND program, we found opioid peptides bind with high affinity to single populations of synaptic plasma membranes receptors, whereas opiate alkaloids bind to multiple sites. Initial kinetic experiments revealed that agonist rates of association were radioligand concentration-independent. Pseudo first-order rate constants for DADL, DAGO, diprenorphine, and naltrexone association were estimated to be 5.63 X 10(5), 5.08 X 10(5), 4.60 X 10(6), and 2.3 X 10(6) mol-1 X s-1, respectively. After preincubation of 0.2-1 nM radioligand for variable time intervals, dissociation was initiated by addition of 1 microM unlabeled ligand. If saturation binding was achieved before dissociation was initiated, then nearly monophasic dissociation of DADL, DAGO, and diprenorphine and a biphasic off-rate for naltrexone were observed. When association times were reduced to pre-equilibrium intervals, the kinetics of dissociation of agonists became biphasic and association time-dependent, but that for antagonists did not change significantly. Comparisons by both graphical methods and computerized nonlinear regression analyses of rate constants revealed that the fraction of the rapid component of agonist dissociation decreases and that of the slow component is elevated with increasing receptor occupancy. In the presence of 100 mM NaCl, DADL dissociation became association time-independent. These data are consistent with the idea that the Na+ effect is brought about by a change of receptor to an antagonist-like conformation. On the basis of both association and dissociation kinetic data, opioid agonists appear to interact in a multistep process in which a rapid, reversible association is followed by the formation of a more tightly bound complex.  相似文献   

20.
Lauer S  Goldstein B  Nolan RL  Nolan JP 《Biochemistry》2002,41(6):1742-1751
Cholera toxin entry into mammalian cells is mediated by binding of the pentameric B subunit (CTB) to ganglioside GM(1) in the cell membrane. We used flow cytometry to quantitatively measure in real time the interactions of fluorescently labeled pentameric cholera toxin B-subunit (FITC-CTB) with its ganglioside receptor on microsphere-supported phospholipid membranes. A model that describes the multiple steps of this mode of recognition was developed to guide our flow cytometric experiments and extract relevant equilibrium and kinetic rate constants. In contrast to previous studies, our approach takes into account receptor cross-linking, an important feature for multivalent interactions. From equilibrium measurements, we determined an equilibrium binding constant for a single subunit of FITC-CTB binding monovalently to GM(1) presented in bilayers of approximately 8 x 10(7) M(-1) while that for binding to soluble GM(1)-pentasaccharide was found to be approximately 4 x 10(6) M(-1). From kinetic measurements, we determined the rate constant for dissociation of a single site of FITC-CTB from microsphere-supported bilayers to be (3.21 +/- 0.03) x 10(-3) s(-1), and the rate of association of a site on FITC-CTB in solution to a GM(1) in the bilayer to be (2.8 +/- 0.4) x 10(4) M(-1) s(-1). These values yield a lower estimate for the equilibrium binding constant of approximately 1 x 10(7) M(-1). We determined the equilibrium surface cross-linking constant [(1.1 +/- 0.1) x 10(-12) cm(2)] and from this value and the value for the rate constant for dissociation derived a value of approximately 3.5 x 10(-15) cm(2) s(-1) for the forward rate constant for cross-linking. We also compared the interaction of the receptor binding B-subunit with that of the whole toxin (A- and B-subunits). Our results show that the whole toxin binds with approximately 100-fold higher avidity than the pentameric B-subunit alone which is most likely due to the additional interaction of the A(2)-subunit with the membrane surface. Interaction of cholera toxin B-subunit and whole cholera toxin with gangliosides other than GM(1) revealed specific binding only to GD1(b) and asialo-GM(1). These interactions, however, are marked by low avidity and require high receptor concentrations to be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号