共查询到20条相似文献,搜索用时 15 毫秒
1.
Serglycin is the major proteoglycan in most hematopoietic cells, including
monocytes and macrophages. The monoblastic cell line U937-1 was used to
study the expression of serglycin during proliferation and differentiation.
In unstimulated proliferating U937-1 cells serglycin mRNA is
nonconstitutively expressed. The level of serglycin mRNA was found to
correlate with the synthesis of chondroitin sulfate proteoglycan (CSPG).
The U937-1 cells were induced to differentiate into different types of
macrophage-like cells by exposing the cells to PMA, RA, or VitD3. These
inducers of differentiation affected the expression of serglycin mRNA in
three different ways. The initial upregulation seen in the normally
proliferating cells was not observed in PMA treated cells. In contrast, RA
increased the initial upregulation, giving a reproducible six times
increase in serglycin mRNA level from 4 to 24 h of incubation, compared to
a four times increase in the control cells. VitD3 had no effect on the
expression of serglycin mRNA. The incorporation of (35S)sulfate into CSPG
decreased approximately 50% in all three differentiated cell types.
Further, the (35S)CSPGs expressed were of larger size in PMA treated cells
than controls, but smaller after RA treatment. This was due to the
expression of CSPGs, with CS-chains of 25 and 5 kDa in PMA and RA treated
cells, respectively, compared to 11 kDa in the controls. VitD3 had no
significant effect on the size of CSPG produced. PMA treated cells secreted
75% of the (35S)PGs expressed, but the major portion was retained in cells
treated with VitD3 or RA. The differences seen in serglycin mRNA levels,
the macromolecular properties of serglycin and in the PG secretion
patterns, suggest that serglycin may have different functions in different
types of macrophages.
相似文献
2.
Leukemic cell lines, such as U937, THP-1, and HL60 cells, can differentiate into macrophages following exposure to various agents including 12-O-tetradecanoylphorbol-13-acetate (TPA) in vitro. It is well known that TPA enhances reactive oxygen species (ROS) generation through the activation of NADPH oxidase (NOX), and ROS act as mediators in TPA signaling. Extracellular-superoxide dismutase (EC-SOD) is a major anti-oxidative enzyme that protects the cells from damaging effects of superoxide. Recently, the reduction of Cu/Zn-SOD and the induction of Mn-SOD by TPA in leukemic cells have been reported; however, the regulation of EC-SOD by TPA remains poorly understood. Here, we explored the regulation of EC-SOD during the monocytic differentiation of U937 cells by TPA. We observed the reduction of EC-SOD and Cu/Zn-SOD, whereas the induction of Mn-SOD during the differentiation of U937 cells. The reduction of EC-SOD and Cu/Zn-SOD was attenuated by pretreatments with GF109203X (an inhibitor of protein kinase C, PKC), diphenyleneiodonium (an inhibitor of NOX), and U0126 (an inhibitor of mitogen-activated protein kinase kinase, MEK/extracellular-signal regulated kinase, ERK). Interestingly, pretreatment with BAY11-7082 (an inhibitor of nuclear factor-κB, NF-κB) suppressed the reduction of Cu/Zn-SOD, but not of EC-SOD. Furthermore, we also determined the involvement of newly synthesized protein and the instability of mRNA in the reduction of EC-SOD. Overall, our results suggest that the expression of EC-SOD is decreased by TPA through intracellular signaling consisting of PKC, NOX-derived ROS and MEK/ERK, but not of NF-κB signaling. 相似文献
3.
4.
Sphingomyelin synthase as a potential target for D609-induced apoptosis in U937 human monocytic leukemia cells 总被引:1,自引:0,他引:1
Meng A Luberto C Meier P Bai A Yang X Hannun YA Zhou D 《Experimental cell research》2004,292(2):385-392
Tricyclodecan-9-yl-xanthogenate (D609) is a selective tumor cytotoxic agent. However, the mechanisms of action of D609 against tumor cells have not been well established. Using U937 human monocytic leukemia cells, we examined the ability of D609 to inhibit sphingomyelin synthase (SMS), since inhibition of SMS may contribute to D609-induced tumor cell cytotoxicity via modulating the cellular levels of ceramide and diacylglycerol (DAG). The results showed that D609 is capable of inducing U937 cell death by apoptosis in a dose- and time-dependent manner. The induction of U937 cell apoptosis was associated with an inhibition of SMS activity and a significant increase in the intracellular level of ceramide and decrease in that of sphingomyelin (SM) and DAG, which resulted in an elevation of the ratio between ceramide and DAG favoring the induction of apoptosis. In addition, incubation of U937 cells with C(6)-ceramide and/or H7 (a selective PKC inhibitor) reduced U937 cell viability; whereas pretreatment of the cells with a PKC activator, PMA or 1-oleoyl-2-acetylglycerol (OAG), attenuated D609-induced U937 cell apoptosis. These results suggest that SMS is a potential target of D609 and inhibition of SMS may contribute to D609-induced tumor cell death via modulation of the cellular levels of ceramide and DAG. 相似文献
5.
《Bone and mineral》1989,5(3):323-333
Investigation of the effects of 1,25(OH)2D3 and 24,25(OH)2D3 on the proliferation and differentiation of the human myelomonocytic cell line U937 has been complemented with studies of the effect of the same metabolites on the number of nuclear receptors for 1,25(OH)2D3. Both 1,25(OH)2D3 and 24,25(OH)2D3 inhibit the proliferation of U937 cells in a dose-dependent manner. The concentrations of 24,25(OH)2D3 required to produce this effect were 100-times greater than those of 1,25(OH)2D3. Inhibition of proliferation was associated with increased expression of the CD14 and 200 kDa 63D3 antigens thus confirming differentiation of U937 towards a more mature cell type.Studies of the nuclear receptor for 1,25(OH)2D3 showed that pre-treatment of the cells with 1,25(OH)2D3 resulted in an apparent 40% decrease in the number of detectable 1,25(OH)2D3 receptors as compared to control U937 cells. This is due to the fact that the 1,25(OH)2D3 binds to U937 cell nuclei during culture and thus blocks the subsequent binding of radiolabelled 1,25(OH)2D3 used to measure the number of 1,25(OH)2D3 receptors. Measurement of the binding of unlabelled 1,25(OH)2D3 by radioimmunoassay indicated that pre-treatment of the cells with 1,25(OH)2D3 increased the capacity of U937 to bind the hormone, although measurement of these receptors by whole cell assay was prevented by the binding of 1,25(OH)2D3 itself. This effect was not observed with 24,25(OH)2D3 which was more easily displaced from binding sites by radiolabelled 1,25(OH)2D3 and it appears to act through low affinity binding to the 1,25(OH)2D3 receptor. 相似文献
6.
7.
Jian Dong Mikihiko Naito Tetsuo Mashima Won Hee Jang Takashi Tsuruo 《Journal of cellular physiology》1998,174(2):179-185
Tumor necrosis factor-α (TNF-α) is a cytokine that induces apoptosis in various cell systems by binding to the TNF receptor (TNFR). To study TNF-α-induced apoptosis, we isolated and characterized a novel TNF-α-resistant variant, U937/TNF clone UA, from human monocytic leukemia U937 cells. The UA cells resist apoptosis induced by TNF-α and anti-Fas antibody but not by anticancer drugs, such as VP-16 and Ara-C. Somatic cell hybridization between U937 and UA showed that apoptosis resistance to TNF-α in UA was genetically recessive. The hybridization analysis also showed that UA and another recessive mutant clone, UC, belong to different complementation groups in TNF-α-induced apoptosis signaling. In UA cells, TNF-α-induced disruption of mitochondrial membrane potential and CPP32 activation were abrogated. Expression of TNFR, Fas, and Bcl-2 family proteins was not changed in UA cells. These results suggest that the apoptosis resistant UA cells could have a functional defect in apoptosis signaling from the TNFR to mitochondria and interleukin-1β converting enzyme (ICE) family protease activation. UA cells could be used to study signaling linkage between cell death-inducing receptor and mitochondria. J. Cell. Physiol. 174:179–185, 1998. © 1998 Wiley-Liss, Inc. 相似文献
8.
WEHI-3B D- cells differentiate in response to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) but not to all-trans-retinoic acid (RA) or other inducing agents. Combinations of RA with 1,25-(OH)2D3 interact to produce synergistic differentiation of WEHI-3B D- cells. To determine factors involved in the synergistic interaction, expression of the 1,25-(OH)2D3 receptor (VDR) and retinoid receptors, RARalpha and RXRalpha, was measured. No VDR was detected in untreated WEHI-3B D- cells; however, RA and 1,25-(OH)2D3 when used as single agents caused a slight induction of the VDR and in combination produced a marked increase in the VDR. In contrast, no changes in RARalpha and RXRalpha were initiated by these compounds. An RAR-selective agonist combined with 1,25-(OH)2D3 produced synergistic differentiation of WEHI-3B D- cells, whereas an RXR-selective agonist did not. To gain information on the role of the VDR in the synergistic interaction, the VDR gene was transferred into WEHI-3B D+ cells, in which no VDR was detected and no synergism was produced. Expression of the VDR conferred differentiation responsiveness to 1,25-(OH)2D3 in WEHI-3B D+ cells. These findings suggest that (a) induction of VDR expression is a key component in the synergistic differentiation induced by 1,25-(OH)2D3 and RA and (b) RAR and not RXR must be activated for enhanced induction of the VDR and for the synergistic differentiation produced by RA and 1, 25-(OH)2D3. 相似文献
9.
Xiao Shen Jinhai Tang Jinhang Hu Le Guo Yingying Xing Tao Xi 《Biotechnology letters》2013,35(11):1799-1806
MiR-424 plays an important role via promoting the monocytic differentiation in many human leukemia cell lines. Here, we report that miR-424 decreased miR-125b expression to 36 % by directly targeting caudal type homeobox 2. However, miR-424 also decreased expression of Fes, PU.1 and colony-stimulating factor receptor (MCSFR). As Fes, PU.1 and MCSFR were down-regulated by over-expression of miR-125b (unpublished work), a similar effect of miR-424 and Fes siRNA on CD64, Egr-1, Egr-2 and CEBPA indicates that Fes may be an important downstream target of miR-424. We hypothesize that miR-424 promotes monocytic differentiation by regulating other critical factors and miR-424 has high affinity for these factors. For the first time, the molecular mechanism of miR-424 during monocytic differentiation of U937 cells has been elucidated in this study. 相似文献
10.
K Takeuchi H Ishihara K Tsuneoka M Shikita 《Biochemical and biophysical research communications》1991,178(1):263-268
In the presence of 1 nM retinoic acid (RA), pentobarbital markedly enhanced differentiation of HL-60 cells to granulocytic cells. In the absence of RA, pentobarbital by itself did not induce cell differentiation. Similarly, pentobarbital enhanced the action of 1,25-dihydroxyvitamin D3 to induce differentiation of HL-60 cells into monocyte/macrophage lineage. The potency of various barbiturates to enhance cell differentiation was closely correlated with their activity to inhibit protein kinase C of HL-60 cells. In contrast to staurosporine, however, barbiturates did not affect the action of differentiation inducers of other types such as dimethyl sulfoxide, dibutyryl cyclic AMP or actinomycin D. 相似文献
11.
Vitamin D3, an important seco-steroid hormone for the regulation of body calcium homeostasis, promotes immature myeloid precursor cells to differentiate into monocytes/macrophages. Vitamin D receptor (VDR) belongs to a nuclear receptor super-family that mediates the genomic actions of vitamin D3 and regulates gene expression by binding with vitamin D response elements in the promoter region of the cognate gene. Thus by regulating gene expression, VDR plays an important role in modulating cellular events such as differentiation, apoptosis, and growth. Here we report lipopolysaccharide (LPS), a bacterial toxin; decreases VDR protein levels and thus inhibits VDR functions in the human blood monocytic cell line, THP-1. The biologically active form of vitamin D3, 1alpha,25-dihydroxy vitamin D3 [1,25(OH)2D3], induced VDR in THP-1 cells after 24 h treatment, and LPS inhibited 1,25(OH)2D3-mediated VDR induction. However, LPS and 1,25(OH)2D3 both increased VDR mRNA levels in THP-1 cells 20 h after treatment, as observed by real time RT-PCR. Moreover, LPS plus 1,25(OH)2D3 action on VDR mRNA level was additive and synergistic. A time course experiment up to 60 h showed an increase in VDR mRNA that was not preceded with an increase in VDR protein levels. Although the proteasome pathway plays an important role in VDR degradation, the proteasome inhibitor lactacystin had no effect on the LPS-mediated down-regulation of 1,25(OH)2D3 induced VDR levels. Reduced VDR levels by LPS were accompanied by decreased 1,25(OH)2D3/VDR function determined by VDR responsive 24-hydroxylase (CYP24) gene expression. The above results suggest that LPS impairs 1,25(OH)2D3/VDR functions, which may negatively affect the ability of 1,25(OH)2D3 to induce myeloid differentiation into monocytes/macrophages. 相似文献
12.
Hlne Defacque David Piquemal Annie Basset Jacques Marti Thrse Commes 《Journal of cellular physiology》1999,178(1):109-119
Vitamin D and retinoids cooperate to inhibit the proliferation and induce the differentiation of human myelomonocytic U937 leukemia cells. In the present work, we investigated the role of TGF-β as an endogenous mediator of this process. We found that the TGF-β1 precursor began to accumulate in cell culture supernatants soon after the addition of 1α,25 dihydroxyvitamin D3 (VD) and retinoids. We used neutralizing antibodies (AbTGF-β) and antisense oligonucleotide (AS Oligo) to inhibit its possible effects. Our data demonstrated that AbTGF-β partially inhibit the expression of the differentiated phenotype, as assessed by measurement of phagocytic activity, response to the chemotactic peptide fMLP, and lysozyme secretion. AS Oligo was also inhibitory, and the effects of AS Oligo and AbTGF-β were cumulative. Cell growth inhibition induced by VD and retinoids was completely reversed, and differentiation was reduced by about 75% when both inhibitors were associated. Time course experiments based on the delayed addition of AbTGF-β and AS Oligo showed that TGF-β1 was required for cell differentiation 24 h after the addition of inducers. Studies on TGF-β receptors revealed that, while the expression of type II receptor was stable, the level of type I TGF-β receptor mRNA and the expression of the protein began to decline early during the differentiation process. As a whole, these results support the notion that an autocrine TGF-β pathway, activated by VD and retinoids in U937 cells, is involved in the early steps of the process leading to cell growth arrest and differentiation. J Cell Physiol 178:109–119, 1999. © 1999 Wiley-Liss, Inc. 相似文献
13.
Santillán G Katz S Vazquez G Boland RL 《The international journal of biochemistry & cell biology》2004,36(10):1910-1918
1alpha,25-Dihydroxy-Vitamin-D3 (1alpha,25(OH)2-Vitamin D3) stimulates in skeletal muscle cells Ca2+ release from inner stores and influx through both voltage-dependent and store-operated Ca2+ (SOC, CCE) channels. We investigated the involvement of TRPC proteins and Vitamin D receptor (VDR) in CCE induced by 1alpha,25(OH)2D3 in chick muscle cells. Two fragments were amplified by RT-PCR, exhibiting approximately 80% sequence homology with mammalian TRPC3/6/7. Northern and Western blots employing a TRPC3-probe and anti-TRPC3 antibodies, respectively, confirmed endogenous expression of a TRPC3-like protein of 140 kDa. Spectrofluorimetric measurements in Fura-2 loaded cells showed reduced CCE and Mn2+ entry in response to either thapsigargin or 1alpha,25(OH)2D3 upon transfection with anti-TRPC3/6/7 antisense oligodeoxynucleotides (ODNs). Transfection with anti-VDR antisense ODNs diminished 1alpha,25(OH)2D3-dependent Ca2+ and Mn2+ influx. Co-immunoprecipitation of TRPC3-like protein and VDR under non-denaturating conditions was observed. We propose that endogenous TRPC3-like proteins and the VDR participate in the modulation of CCE by 1alpha,25(OH)2D3 in muscle cells, which could be mediated by an interaction between these proteins. 相似文献
14.
Ji Y Wang X Donnelly RJ Uskokovic MR Studzinski GP 《Journal of cellular physiology》2002,191(2):198-207
15.
Tanimoto A Murata Y Wang KY Tsutsui M Kohno K Sasaguri Y 《The Journal of biological chemistry》2008,283(8):4643-4651
16.
Qi X Pramanik R Wang J Schultz RM Maitra RK Han J DeLuca HF Chen G 《The Journal of biological chemistry》2002,277(29):25884-25892
17.
18.
19.
Previous report showed that leukemia cells’ differentiation could be induced by retinoic acid (RA), and prostate cancer cells’ proliferation could be inhibited by Vitamin D or its analog. This study aimed to examine whether RA and vitamin D analog EB1089 have synergistic effect on hepatocellular cancer cells’ apoptosis. The hepatocellular cancer cell lines’ viability was determined by MTT method after treating by RA and EB1089 alone or in combination, cell cycle of SSMC-7721 cell analyzed by FACS, mitochondrial membrane potential of SSMC-7721 under different treatments were detected using MitoTracker Red CMXRos. TUNEL analysis was also used for cell apoptosis detection. Real time-PCR and Western Blot assay were used to detect the expression of Bcl-2 and Bax. Moreover, hepatocellular cancer model was developed by subcutaneously (S.C.) challenging H22 cells to nude mice. In the combination group (10 μmol/L RA, 10 nmol/L EB1089), the viability of hepatocellular cancer cells decreased significantly compared with drugs used alone (P < 0.05). From the TUNEL analysis, SSMC-7721 cells have a higher apoptotic ratio in the combined drug group than in the groups for which the drugs were used separately. In a hepatocellular cancer model, the tumor weight of H22 tumor bearing mice was more reduced in the combined drug treated group when compared to the groups for which the drugs were used alone (P < 0.05), in addition, significantly prolonged survival was observed. Combination of RA and EB1089 exert synergistic growth inhibition and apoptosis induction on hepatocellular cancers cells. 相似文献
20.