首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen free radicals and hydroperoxides have been postulated to play a causal role in the aging process, implying that antioxidant enzymes may act as longevity determinants. Catalase (H2O2:H2O2 oxidoreductase; EC1.11.1.6) is the sole enzyme involved in the elimination of H2O2 in Drosophila melanogaster; glutathione peroxidase being absent. A genomic fragment containing the Drosophila catalase gene was used to construct transgenic Drosophila lines by means of P element-mediated transformation. Enhanced levels of catalase (up to 80%) did not prolong the life span of flies, nor did they provide improved protection against oxidative stress induced by hyperoxia or paraquat treatment. However, enhanced resistance to hydrogen peroxide was observed in the overexpressors.  相似文献   

2.
Oxidative damage is thought to be a major causal factor of aging, and is implicated in several human pathologies such as Alzheimer's and Parkinson's diseases. Nevertheless the genetical determinants of in vivo oxidative stress response are still poorly understood. To identify cellular components whose deregulation leads to oxidative stress resistance, we performed a genetic screen in Drosophila melanogaster. We thus identified in this screen Drosophila Inositol 1,4,5-triphosphate kinase I (D-IP3K1), a Drosophila gene homologous to mammalian IP3Ks. In vertebrates, IP3Ks phosphorylate the second messenger Inositol 1,4,5-triphosphate (IP3) to produce Inositol 1,3,4,5 tetrakiphosphate (IP4). IP3 binding to its receptor (IP3R) triggers Ca(2+) release from the endoplasmic reticulum (ER) to the cytosol, whereas IP4 physiological role remains elusive. We show here that ubiquitous overexpression of D-IP3K1 confers resistance of flies to H(2)O(2)- but not to paraquat-induced oxidative stress. Additional genetic analysis with other members of IP3 and IP4 signaling pathways led us to propose that the D-IP3K1 protective effect is mainly mediated through the reduction of IP3 level (which probably results in reduced Ca(2+) release from internal stores), rather than through the rise of IP4 level.  相似文献   

3.

Background

Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress.

Methods and Findings

We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67–79% and 56–66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis.

Conclusions

We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.  相似文献   

4.
Mating stimulates complex physiological changes in females of Drosophila melanogaster. Long-term effects of mating are manifested in increased fecundity and shortened lifespan. It is not clear how mating affects stress resistance in fly females. We addressed this question here and found that mated and highly fecund wild-type D. melanogaster females have significantly higher resistance to starvation throughout their lifetime than age-matched virgin females. Mean survival time under starvation was age dependent with maximum survival time observed in 15-day-old mated females. Mating-induced increase in starvation resistance was associated with significantly higher fat reserves stored as triacylglycerols. While mated females had higher resistance to starvation, their resistance to oxidative stress was significantly lower than in age-matched virgins. Our study revealed that mating leads to an opposing relationship between resistance to starvation and resistance to oxidative stress in Drosophila females. Thus, shortened lifespan of mated females is associated with their high-fat content and greater susceptibility to oxidative stress.  相似文献   

5.
Flavonoids and oxidative stress in Drosophila melanogaster   总被引:1,自引:0,他引:1  
Flavonoids are a family of antioxidants that are widely represented in fruits, vegetables, dry legumes, and chocolate, as well as in popular beverages, such as red wine, coffee, and tea. The flavonoids chlorogenic acid, kaempferol, quercetin and quercetin 3β-d-glycoside were investigated for genotoxicity using the wing somatic mutation and recombination test (SMART). This test makes use of two recessive wing cell markers: multiple wing hairs (mwh) and flare (flr(3)), which are mutations located on the left arm of chromosome 3 of Drosophila melanogaster and are indicative of both mitotic recombination and various types of mutational events. In order to test the antioxidant capacities of the flavonoids, experiments were conducted with various combinations of oxidants and polyphenols. Oxidative stress was induced using hydrogen peroxide, the Fenton reaction and paraquat. Third-instar transheterozygous larvae were chronically treated for all experiments. The data obtained in this study showed that, at the concentrations tested, the flavonoids did not induce somatic mutations or recombination in D. melanogaster with the exception of quercetin, which proved to be genotoxic at only one concentration. The oxidants hydrogen peroxide and the Fenton reaction did not induce mutations in the wing somatic assay of D. melanogaster, while paraquat and combinations of flavonoids produced significant numbers of small single spots. Quercetin 3β-d-glycoside mixed with paraquat was shown to be desmutagenic. Combinations of the oxidants with the other flavonoids did not show any antioxidant activity.  相似文献   

6.
Superoxide dismutases (SOD) play a major role in the intracellular defense against oxygen radical damage to aerobic cells. In eucaryotes, the cytoplasmic form of the enzyme is a 32-kDa dimer containing two copper and two zinc atoms (CuZn SOD) that catalyzes the dismutation of the superoxide anion (O2-) to H2O2 and O2. Superoxide-mediated damage has been implicated in a number of biological processes, including aging and cancer; however, it is not certain whether endogenously elevated levels of SOD will reduce the pathological events resulting from such damage. To understand the in vivo relationship between an efficient dismutation of O2- and oxidative injury to biological structures, we generated transgenic strains of Drosophila melanogaster overproducing CuZn SOD. This was achieved by microinjecting Drosophila embryos with P-elements containing bovine CuZn SOD cDNA under the control of the Drosophila actin 5c gene promoter. Adult flies of the resulting transformed lines which expressed both mammalian and Drosophila CuZn SOD were then used as a novel model for evaluating the role of oxygen radicals in aging. Our data show that expression of enzymatically active bovine SOD in Drosophila flies confers resistance to paraquat, an O2(-)-generating compound. This is consistent with data on adult mortality, because there was a slight but significant increase in the mean lifespan of several of the transgenic lines. The highest level of expression of the active enzyme in adults was 1.60 times the normal value. Higher levels may have led to the formation of toxic levels of H2O2 during development, since flies that died during the process of eclosion showed an unusual accumulation of lipofuscin (age pigment) in some of their cells. In conclusion, our data show that free-radical detoxification has a minor by positive effect on mean longevity for several strains.  相似文献   

7.
Drosophila melanogaster (fruit fly) is a well-established model organism for genetic studies of development and aging. We examined the effects of lethal ionizing radiation on male and female adult Drosophila of different ages, using doses of radiation from 200 to 1500 Gy. Fifty percent lethality 2 days postirradiation (LD(50/2)) in wild-type 1-day-old adult fruit flies was approximately 1238 Gy for males and 1339 Gy for females. We observed a significant age-dependent decline in the radiation resistance of both males and females. Radiation damage is postulated to occur by the generation of oxygen radicals. An age-related decline in the ability of flies to resist an agent that induces oxygen radicals, paraquat, was observed when comparing 10- and 20-day adults. Female flies are more resistant to paraquat than male flies. Oxidative stress mediated by paraquat was additive with sublethal exposures to radiation in young adults. Therefore, the ability to repair the damage caused by oxygen radicals seems to decline with the age of the flies. Because Drosophila adults are largely post-mitotic, our data suggest that adult Drosophila melanogaster can serve as an excellent model to study the factors responsible for radiation resistance in post-mitotic tissue and age-dependent changes in this resistance.  相似文献   

8.
9.
Morey M  Serras F  Corominas M 《FEBS letters》2003,534(1-3):111-114
Several lines of evidence indicate that selenoproteins mainly act as cellular antioxidants. Here, we test this idea comparing the sensitivity to oxidative stress (paraquat and hydrogen peroxide) between wild type and heterozygous flies for the selenophosphate synthetase selD(ptuf) mutation. Whereas under normal laboratory conditions no difference in life span is observed, a significant decrease is seen in heterozygous flies treated with oxidant agents. In contrast, overexpression of the selD gene in motoneurons did not extend longevity. Our results strongly suggest that selD haploinsufficiency makes heterozygous flies more sensitive to oxidative stress and add further evidence to the role of selenoproteins as cellular antioxidants.  相似文献   

10.
Circadian rhythms are fundamental biological phenomena generated by molecular genetic mechanisms known as circadian clocks. There is increasing evidence that circadian synchronization of physiological and cellular processes contribute to the wellness of organisms, curbing pathologies such as cancer and premature aging. Therefore, there is a need to understand how circadian clocks orchestrate interactions between the organism’s internal processes and the environment. Here, we explore the nexus between the clock and oxidative stress susceptibility in Drosophila melanogaster. We exposed flies to acute oxidative stress induced by hydrogen peroxide (H2O2), and determined that mortality rates were dependent on time at which exposure occurred during the day/night cycle. The daily susceptibility rhythm was abolished in flies with a null mutation in the core clock gene period (per) abrogating clock function. Furthermore, lack of per increased susceptibility to H2O2 compared to wild-type flies, coinciding with enhanced generation of mitochondrial H2O2 and decreased catalase activity due to oxidative damage. Taken together, our data suggest that the circadian clock gene period is essential for maintaining a robust anti-oxidative defense.  相似文献   

11.
4-Vinylcyclohexene (VCH) is a dimer of 1,3-butadiene produced as a by-product of pesticides, plastic, rubber, flame retardants, and tire production. Although, several studies have reported the ovotoxicity of VCH, information on a possible involvement of oxidative stress in the toxicity of this occupational chemical is scarce. Hence, this study was carried out to investigate further possible mechanisms of toxicity of VCH with a specific emphasis on oxidative stress using a Drosophila melanogaster model. D. melanogaster (both genders) of 1 to 3 days old were exposed to different concentrations of VCH (10 µM–1 mM) in the diet for 5 days. Subsequently, the survival and negative geotaxis assays and the quantification of reactive oxygen species (ROS) generation were determined. In addition, we evaluated RT-PCR expressions of selected oxidative stress and antioxidant mRNA genes (HSP27, 70, and 83, SOD, Nrf-2, MAPK2, and catalase). Furthermore, catalase, glutathione-S-transferase (GST), delta aminolevulinic acid dehydratase (δ-ALA-D), and acetylcholinesterase (AChE) activities were determined. VCH exposure impaired negative geotaxic behavior and induced the mRNA of SOD, Nrf-2, and MAPK2 genes expressions. There were increases in catalase and ROS production, as well as inhibitions of GST, δ-ALA-D, and AChE activities (P<0.05). Our results suggest that the VCH mechanism of toxicity is associated with oxidative damage, as evidenced by the alteration in the oxidative stress-antioxidant balance, and possible neurotoxic consequences due to decreased AChE activity, and impairments in negative geotaxic behavior. Thus, we conclude that D. melanogaster is a useful model for investigating the toxicity of VCH exposure, and here, we have provided further insights on the mechanism of VCH-induced toxicity.  相似文献   

12.
Reactive oxygen species (ROS) are a common byproduct of mitochondrial energy metabolism, and can also be induced by exogenous sources, including UV light, radiation, and environmental toxins. ROS generation is essential for maintaining homeostasis by triggering cellular signaling pathways and host defense mechanisms. However, an imbalance of ROS induces oxidative stress and cellular death and is associated with human disease, including age-related locomotor impairment. To identify genes affecting sensitivity and resistance to ROS-induced locomotor decline, we assessed locomotion of aged flies of the sequenced, wild-derived lines from the Drosophila melanogaster Genetics Reference Panel on standard medium and following chronic exposure to medium supplemented with 3 mM menadione sodium bisulfite (MSB). We found substantial genetic variation in sensitivity to oxidative stress with respect to locomotor phenotypes. We performed genome-wide association analyses to identify candidate genes associated with variation in sensitivity to ROS-induced decline in locomotor performance, and confirmed the effects for 13 of 16 mutations tested in these candidate genes. Candidate genes associated with variation in sensitivity to MSB-induced oxidative stress form networks of genes involved in neural development, immunity, and signal transduction. Many of these genes have human orthologs, highlighting the utility of genome-wide association in Drosophila for studying complex human disease.  相似文献   

13.
The long‐term survival of species and populations depends on their ability to adjust phenotypic values to environmental conditions. In particular, the capability of dealing with environmental stress to buffer detrimental effects on fitness is considered to be of pivotal importance. Resistance traits are readily modulated by a wide range of environmental factors. In the present study, Drosophila melanogaster Meigen is used to investigate plastic responses to temperature and photoperiod in stress resistance traits. The results reveal that stress resistance traits (cold, heat, starvation and desiccation resistance) are affected by the factors temperature and sex predominantly. Cooler temperatures compared with warmer temperatures increase cold tolerance, desiccation and starvation resistance, whereas they reduce heat tolerance. Except for heat resistance, females are more stress‐resistant than males. Stress resistance traits are also affected by photoperiod. Shorter photoperiods decrease cold tolerance, whereas longer photoperiods enhance desiccation resistance. Overall, thermal effects are pervasive throughout all measured resistance traits, whereas photoperiodic effects are of limited importance in the directly developing (i.e. nondiapausing) flies used here, suggesting that pronounced photoperiodic effects on stress resistance traits may be largely limited to, and triggered by, diapause‐inducing effects.  相似文献   

14.
The pathogen- and ethylene-inducible pepper-basic pathogenesis-related (PR)-1 gene, CABPR1 , was strongly expressed in pepper leaves by osmotic and oxidative stresses. The pepper CABPR1 was introduced into the Arabidopsis plants under the control of the cauliflower mosaic virus 35S promoter. Polymerase chain reaction-amplification with the Arabidopsis genomic DNA and Northern blot analyses confirmed that the pepper CABPR1 gene was integrated into the Arabidopsis genome, where it was overexpressed in the transgenic Arabidopsis plants under normal growth conditions. The constitutive overexpression of CABPR1 induced the expression of the Arabidopsis PR-genes including PR-4 , PR-5 and PDF1.2 . Enhanced resistance to phytopathogenic bacteria, Pseudomonas syringae pv. tomato DC3000, was also observed in the transgenic Arabidopsis plants. CABPR1 overexpression in the transgenic Arabidopsis caused enhanced seed germination under NaCl (ionic) and mannitol (non-ionic) osmotic stresses. Enhanced tolerances to high salinity and dehydration stresses during seed germination of the transgenic plants were not found at the early seedling stage. The transgenic Arabidopsis plants exhibited a higher tolerance to oxidative stress by methyl viologen at the seed germination, seedling and adult plant stages. These results suggest that the CABPR1 gene may function in the enhanced disease resistance and oxidative stress tolerance of transgenic Arabidopsis plants.  相似文献   

15.
Objectives: The study was conducted to assess the redox status of Drosophila flies upon oral intake of insulin-mimetic salt, sodium molybdate (Na2MoO4).

Methods: Oxidative stress parameters and activities of antioxidant and associated enzymes were analyzed in two-day-old D. melanogaster insects after exposure of larvae and newly eclosed adults to three molybdate levels (0.025, 0.5, or 10 mM) in the food.

Results: Molybdate increased content of low molecular mass thiols and activities of catalase, superoxide dismutase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase in males. The activities of these enzymes were not affected in females. Males exposed to molybdate demonstrated lower carbonyl protein levels than the control cohort, whereas females at the same conditions had higher carbonyl protein content and catalase activity than ones in the control cohort. The exposure to 10 mM sodium molybdate decreased the content of protein thiols in adult flies of both sexes. Sodium molybdate did not affect the activities of NADP-dependent malate dehydrogenase and thioredoxin reductase in males or NADP-dependent isocitrate dehydrogenase in either sex at any concentration.

Discussion: Enhanced antioxidant capacity in upon Drosophila flies low molybdate levels in the food suggests that molybdate can be potentially useful for the treatment of certain pathologies associated with oxidative stress.  相似文献   


16.
Zeng C  Du Y  Alberico T  Seeberger J  Sun X  Zou S 《Fly》2011,5(3):174-180
Drosophila melanogaster is ideal for studying lifespan modulated by dietary restriction (DR) and oxidative stress, and also for screening prolongevity compounds. It is critical to measure food intake in the aforementioned studies. Current methods, however, overlook the amount of the food excreted out of the flies as feces or deposited in eggs. Here we describe a feeding method using a radioactive tracer to measure gender-specific food intake, retention and excretion in response to DR and oxidative stress to account for all the ingested food. Flies were fed a full, restricted or paraquat-containing diet. The radioactivity values of the food in fly bodies, feces and eggs were measured separately after a 24-hr feeding. Food intake was calculated as the sum of these measurements. We found that most of the tracer in the ingested food was retained in the fly bodies and < 8% of the tracer was excreted out of the flies as feces and eggs in the case of females during a 24-hr feeding. Under a DR condition, flies increased food intake in volume to compensate for the reduction of calorie content in the diet and also slightly increased excretion. Under an oxidative stress condition, flies reduced both food intake and excretion. Under all the tested dietary conditions, males ingested and excreted 3-5 fold less food than females. This study describes an accurate method to measure food intake and provides a basis to further investigate prandial response to DR and prolongevity interventions in invertebrates.  相似文献   

17.
The circadian clock regulates vital aspects of physiology including protein synthesis and oxidative stress response. In this investigation, we performed a proteome-wide scrutiny of rhythmic protein accrual in Drosophila melanogaster on exposure to rotenone, rotenone + hesperidin and hesperidin in D. melanogaster. Total protein from fly samples collected at 6 h intervals over the 24 h period was subjected to two-dimensional gel electrophoresis and mass spectrometry. Bioinformatics tool, Protein ANalysis THrough Evolutionary Relationships classification system was used to the determine the biological processes of the proteins of altered abundance. Conspicuous variations in the proteome (151 proteins) of the flies exposed to oxidative stress (by rotenone treatment) and after alleviating oxidative stress (by hesperidin treatment) were observed during the 24 h cycle. Significantly altered levels of abundance of a wide variety of proteins under oxidative stress (rotenone treatment) and under alleviation of oxidative stress (rotenone + hesperidin treatment) and hesperidin (alone) treatment were observed. These proteins are involved in metabolism, muscle activity, heat shock response, redox homeostasis, protein synthesis/folding/degradation, development, ion-channel/cellular transport, and gustatory and olfactory function of the flies. Our data indicates that numerous cellular processes are involved in the temporal regulation of proteins and widespread modulations happen under rotenone treatment and, action of hesperidin could also be seen on these categories of proteins.  相似文献   

18.
《Fly》2013,7(3):174-180
Drosophila melanogaster is ideal for studying lifespan modulated by dietary restriction (DR) and oxidative stress, and also for screening prolongevity compounds. It is critical to measure food intake in the aforementioned studies. Current methods, however, overlook the amount of the food excreted out of the flies as feces or deposited in eggs. Here we describe a feeding method using a radioactive tracer to measure gender-specific food intake, retention and excretion in response to DR and oxidative stress to account for all the ingested food. Flies were fed a full, restricted or paraquat-containing diet. The radioactivity values of the food in fly bodies, feces and eggs were measured separately after a 24-hr feeding. Food intake was calculated as the sum of these measurements. We found that most of the tracer in the ingested food was retained in the fly bodies and &lt; 8% of the tracer was excreted out of the flies as feces and eggs in the case of females during a 24-hr feeding. Under a DR condition, flies increased food intake in volume to compensate for the reduction of calorie content in the diet and also slightly increased excretion. Under an oxidative stress condition, flies reduced both food intake and excretion. Under all the tested dietary conditions, males ingested and excreted 3-5 fold less food than females. This study describes an accurate method to measure food intake and provides a basis to further investigate prandial response to DR and prolongevity interventions in invertebrates.  相似文献   

19.
Summary Strains set up from single inseminated females of D. melanogaster from the wild differ in their resistance to the anaesthetics, ether and chloroform. The main differences between four selected extreme strains could be explained by additive genes, which in the case of ether resistance were located to regions of chromosomes 2 and 3. The lack of correspondence between ether and chloroform resistance between strains indicates that although the type of genetic architecture controlling the traits is similar, the actual genes differ, which is reasonable in view of their differing chemical structures. Quite high heritabilities were found for resistance to ether based on five inbred strains. No significant associations between resistance to ether and body weight, developmental rate or longevity were found.It is clear that resistance to both anaesthetics would be amenable to more detailed genetic analyses. It is pointed out that the general conclusions reached from such studies will have implications with respect to the effect of chemicals such as insecticides, not naturally present in nature.  相似文献   

20.
Even though laboratory evolution experiments have demonstrated genetic variation for learning ability, we know little about the underlying genetic architecture and genetic relationships with other ecologically relevant traits. With a full diallel cross among twelve inbred lines of Drosophila melanogaster originating from a natural population (0.75 < F < 0.93), we investigated the genetic architecture of olfactory learning ability and compared it to that for another behavioral trait (unconditional preference for odors), as well as three traits quantifying the ability to deal with environmental challenges: egg‐to‐adult survival and developmental rate on a low‐quality food, and resistance to a bacterial pathogen. Substantial additive genetic variation was detected for each trait, highlighting their potential to evolve. Genetic effects contributed more than nongenetic parental effects to variation in traits measured at the adult stage: learning, odorant perception, and resistance to infection. In contrast, the two traits quantifying larval tolerance to low‐quality food were more strongly affected by parental effects. We found no evidence for genetic correlations between traits, suggesting that these traits could evolve at least to some degree independently of one another. Finally, inbreeding adversely affected all traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号