首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Initial studies of the prophylactic effect of parenterally administered respiratory syncytial virus (RSV)-neutralizing antibodies in cotton rats indicated that virus replication in lung tissues was restricted when animals with preexisting antibody titers in serum of 1:100 or more (as measured by plaque reduction) were challenged intranasally with 10(4) PFU of virus. Subsequently, a therapeutic effect of parenterally administered RSV antibodies (present in human gamma globulin) was demonstrated in both cotton rats and owl monkeys. Parenteral inoculation of RSV-infected cotton rats or owl monkeys with purified human immunoglobulin licensed for intravenous administration in humans (IVIG) effected a 10(-1.7) to 10(-2.7) reduction in the level of pulmonary virus at the height of infection. Because of these encouraging results, we examined topical administration of IVIG to determine whether it was also effective and whether it offered an advantage over the parenteral route with regard to simplicity and the dose required for full therapeutic effect. IVIG (0.025 g/kg) administered topically by the intranasal route to anesthetized cotton rats at the height of RSV infection effected a 10(2.2)-fold reduction in viral titers of pulmonary tissues and a complete clearance of detectable virus in 92% of the animals within 24 h. In contrast, 4 g of IVIG per kg was required to produce a comparable therapeutic effect when the material was administered parenterally. Thus, the therapeutic effect of IVIG was 160 times greater by the topical route than by parenteral inoculation.  相似文献   

5.
Respiratory syncytial virus (RSV) causes respiratory tract infections in young children, and significant morbidity and mortality in the elderly, immunosuppressed, and immunocompromised patients and in patients with chronic lung diseases. Recently, we reported that the pulmonary surfactant phospholipid palmitoyl-oleoyl-phosphatidylglycerol (POPG) inhibited RSV infection in vitro and in vivo by blocking viral attachment to epithelial cells. Simultaneous application of POPG along with an RSV challenge to mice markedly attenuated infection and associated inflammatory responses. Based on these findings, we expanded our studies to determine whether POPG is effective for prophylaxis and postinfection treatment for RSV infection. In vitro application of POPG at concentrations of 0.2–1.0 mg/ml at 24 h after RSV infection of HEp-2 cells suppressed interleukin-8 production up to 80% and reduced viral plaque formation by 2–6 log units. In vivo, the turnover of POPG in mice is relatively rapid, making postinfection application impractical. Intranasal administration of POPG (0.8–3.0 mg), 45 min before RSV inoculation in mice reduced viral infection by 1 log unit, suppressed inflammatory cell appearance in the lung, and suppressed virus-elicited interferon-γ production. These findings demonstrate that POPG is effective for short-term protection of mice against subsequent RSV infection and that it has potential for application in humans.  相似文献   

6.
The amount of passively acquired serum respiratory syncytial virus (RSV)-neutralizing antibodies required to protect the respiratory tract of cotton rats against infection was studied. Infant cotton rats were inoculated intraperitoneally with various dilutions of a single pool of sera derived from cotton rats convalescent from RSV infection. After 24 h, these animals were inoculated with RSV intranasally. Virus replication in the respiratory tract was suppressed in cotton rats which had a serum neutralizing antibody titer of 1:100 or greater. Resistance was greater in the lungs than in the nose. Complete or almost complete resistance in the lungs was observed in cotton rats with a serum neutralizing antibody titer of 1:380 or greater. The level of serum RSV-neutralizing antibodies required to confer significant resistance to infection in the cotton rat was similar to the level of maternally derived serum antibodies possessed by human infants less than 2 months of age, who as a group exhibit relative resistance to RSV disease compared with infants 2 to 6 months of age.  相似文献   

7.
Human metapneumovirus (hMPV) is a newly described paramyxovirus that is an important cause of acute respiratory tract disease. We undertook to develop a small animal model of hMPV infection, pathogenesis, and protection. Hamsters, guinea pigs, cotton rats, and nine inbred strains of mice were inoculated intranasally with hMPV. The animals were sacrificed, and nasal and lung tissue virus yields were determined by plaque titration. None of the animals exhibited respiratory symptoms. The quantity of virus present in the nasal tissue ranged from 4.6 x 10(2) PFU/gram tissue (C3H mice) to greater than 10(5) PFU/gram (hamster). The amount of virus in the lungs was considerably less than in nasal tissue in each species tested, ranging from undetectable (<5 PFU/g; guinea pigs) to 1.8 x 10(5) PFU/gram (cotton rat). The peak virus titer in cotton rat lungs occurred on day 4 postinfection. hMPV-infected cotton rat lungs examined on day 4 postinfection exhibited histopathological changes consisting of peribronchial inflammatory infiltrates. Immunohistochemical staining detected virus only at the luminal surfaces of respiratory epithelial cells throughout the respiratory tract. hMPV-infected cotton rats mounted virus-neutralizing antibody responses and were partially protected against virus shedding and lung pathology on subsequent rechallenge with hMPV. Viral antigen was undetectable in the lungs on challenge of previously infected animals. This study demonstrates that the cotton rat is a permissive small animal model of hMPV infection that exhibits lung histopathology associated with infection and that primary infection protected animals against subsequent infection. This model will allow further in vivo studies of hMPV pathogenesis and evaluation of vaccine candidates.  相似文献   

8.
The role of IL-13 in respiratory syncytial virus (RSV) immunopathogenesis is incompletely described. To assess the effect of IL-13 on primary RSV infection, transgenic mice which either overexpress IL-13 in the lung (IL-13 OE) or non-transgenic littermates (IL-13 NT) were challenged intranasally with RSV. IL-13 OE mice had significantly decreased peak viral titers four days after infection compared to non-transgenic littermates. In addition, IL-13 OE mice had significantly lower RSV-induced weight loss and reduced lung IFN-gamma protein expression compared with IL-13 NT mice. In contrast, primary RSV challenge of IL-13 deficient mice resulted in a small, but statistically significant increase in viral titers on day four after infection, no difference in RSV-induced weight loss compared to wild type mice, and augmented IFN-gamma production on day 6 after infection. In STAT1-deficient (STAT1 KO) mice, where primary RSV challenge produced high levels of IL-13 production in the lungs, treatment with an IL-13 neutralizing protein resulted in greater peak viral titers both four and six days after RSV and greater RSV-induced weight loss compared to mice treated with a control protein. These results suggest that IL-13 modulates illness from RSV-infection.  相似文献   

9.
Airway mucus is a hallmark of respiratory syncytial virus (RSV) lower respiratory tract illness. Laboratory RSV strains differentially induce airway mucus production in mice. Here, we tested the hypothesis that RSV strains differ in pathogenesis by screening six low-passage RSV clinical isolates for mucogenicity and virulence in BALB/cJ mice. The RSV clinical isolates induced variable disease severity, lung interleukin-13 (IL-13) levels, and gob-5 levels in BALB/cJ mice. We chose two of these clinical isolates for further study. Infection of BALB/cJ mice with RSV A2001/2-20 (2-20) resulted in greater disease severity, higher lung IL-13 levels, and higher lung gob-5 levels than infection with RSV strains A2, line 19, Long, and A2001/3-12 (3-12). Like the line 19 RSV strain, the 2-20 clinical isolate induced airway mucin expression in BALB/cJ mice. The 2-20 and 3-12 RSV clinical isolates had higher lung viral loads than laboratory RSV strains at 1 day postinfection (p.i.). This increased viral load correlated with higher viral antigen levels in the bronchiolar epithelium and greater histopathologic changes at 1 day p.i. The A2 RSV strain had the highest peak viral load at day 4 p.i. RSV 2-20 infection caused epithelial desquamation, bronchiolitis, airway hyperresponsiveness, and increased breathing effort in BALB/cJ mice. We found that RSV clinical isolates induce variable pathogenesis in mice, and we established a mouse model of clinical isolate strain-dependent RSV pathogenesis that recapitulates key features of RSV disease.  相似文献   

10.

Background

Respiratory Syncytial Virus (RSV) causes significant disease in the elderly, in part, because immunosenescence impairs protective immune responses to infection in this population. Despite previous and current efforts, there is no RSV vaccine currently licensed in infants or elderly adults. Adjuvanted RSV subunit vaccines have the potential to boost waning immune responses and reduce the burden of RSV disease in the elderly population.

Results

We used an aged BALB/c mouse model to evaluate immune responses to RSV Fusion (F) protein in the absence and presence of an alum adjuvant. We demonstrate that aged BALB/c mice immunized with alum-adjuvanted RSV F protein had significantly reduced lung viral titers at day 4 following challenge with wild-type (wt) RSV. Serum neutralizing antibody titers measured on day 27 correlated with protection in both young and aged vaccinated mice, although the magnitude of antibody titers was lower in aged mice. Unlike young mice, in aged mice, alum-adjuvanted RSV F did not induce lung TH2-type cytokines or eosinophil infiltration compared to non-adjuvanted F protein following wt RSV challenge.

Conclusion

Our studies demonstrate that neutralizing anti-RSV antibody titers correlate with protection in both young and aged BALB/c mice vaccinated with RSV F protein vaccines. The F + alum formulation mediated greater protection compared to the non-adjuvanted F protein in both young and aged mice. However, while alum can boost F-specific antibody responses in aged mice, it does not completely overcome the reduced ability of a senescent immune system to respond to the RSV F antigen. Thus, our data suggest that a stronger adjuvant may be required for the prevention of RSV disease in immunosenescent populations, to achieve the appropriate balance of protective neutralizing antibodies and effective TH1-type cytokine response along with minimal lung immunopathology.
  相似文献   

11.
Respiratory syncytial virus (RSV) is an important cause of respiratory tract disease in infants and the elderly. Currently, no licensed vaccine against RSV is available. Here we describe the development of a safe and effective intranasal subunit vaccine that is based on recombinant fusion (F) protein bound to the surface of immunostimulatory bacterium-like particles (BLPs) derived from the food-grade bacterium Lactococcus lactis. Different variants of F were analyzed with respect to their conformation and reactivity with neutralizing antibodies, assuming that F proteins mimicking the metastable prefusion form of RSV F expose a more extensive and relevant epitope repertoire than F proteins corresponding to the postfusion structure. Our results indicate that the recombinant soluble ectodomain of RSV F readily adopts a postfusion conformation, generation of which cannot be prevented by C-terminal addition of a trimerization motif, but whose formation is prevented by mutation of the two furin cleavage sites in F. While the putative postfusion form of F is recognized well by the monoclonal antibody Palivizumab, this is much less so for the more potently neutralizing, prefusion-specific antibodies D25 and AM22. Both addition of the trimerization motif and mutation of the furin cleavage sites increased the reactivity of F with D25 and AM22, with the highest reactivity being observed for F proteins in which both these features were combined. Intranasal vaccination of mice or cotton rats with BLPs loaded with this latter prefusion-like F protein (BLP-F), resulted in the potent induction of F-specific immunoglobulins and in significantly decreased virus titers in the lungs upon RSV challenge. Moreover, and in contrast to animals vaccinated with formalin-inactivated RSV, animals that received BLP-F exhibited high levels of F-specific secretory IgA in the nose and RSV-neutralizing antibodies in sera, but did not show symptoms of enhanced disease after challenge with RSV.  相似文献   

12.
Little or no antiviral immune response is mounted in athymic nude mice infected with the Daniels strain of Theiler's murine encephalomyelitis virus. In these athymic mice, increasing levels of infectious virus could be detected in the central nervous system. Seventy-five percent (9 of 12) of the nude mice were moribund or dead by 4 weeks postinfection. In contrast, treatment of Theiler's virus-infected nude mice with a neutralizing monoclonal antibody (H7-2) against the viral protein VP-1 resulted in a dramatic reduction of infectious virus within the central nervous system. All antibody-treated nude animals survived beyond 4 weeks postinfection. Monoclonal antibody titers could be maintained by passive transfer in treated nude mice at levels comparable to those of polyclonal antibody titers found in heterozygous infected nu/+ littermates. Areas of demyelination were detected in the untreated animals as early as 7 days after infection with little or no remyelination present. In approximately one-half of the antibody-treated nude animals, no demyelinating lesions were found. However, the rest of these treated mice were found to have areas of both demyelination and remyelination. Thus, anti-Theiler's murine encephalomyelitis virus antibody against VP-1 can play a dramatic role in the survival of mice, clearance of virus, limiting viral spread, and altering the pattern of disease in the absence of a functional T-cell response.  相似文献   

13.
Respiratory Syncytial Virus (RSV) is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F) surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.  相似文献   

14.
The role of IFN in respiratory syncytial virus pathogenesis   总被引:14,自引:0,他引:14  
Formalin-inactivated respiratory syncytial virus (RSV) vaccine preparations have been shown to cause enhanced disease in naive hosts following natural infection. In this study we demonstrate a similar pattern of enhanced disease severity following primary RSV infection of IFN-nonresponsive STAT1(-/-) mice. STAT1(-/-) mice showed markedly increased illness compared with wild-type BALB/c animals following RSV inoculation despite similar lung virus titers and rates of virus clearance. Histologically, STAT1(-/-) animals had eosinophilic and neutrophilic pulmonary infiltrates not present in wild-type or IFN-gamma(-/-)-infected mice. In cytokine analyses of infected lung tissue, IFN-gamma was induced in both STAT1(-/-) and wild-type mice, with preferential IL-4, IL-5, and IL-13 induction only in the STAT1(-/-) animals. Eotaxin was detected in the lungs of both wild-type and STAT1(-/-) mice following infection, with a 1.7-fold increase over wild-type in the STAT1(-/-) mice. Using a peptide epitope newly identified in the RSV fusion protein, we were able to demonstrate that wild-type memory CD4(+) T cells stimulated by this peptide produce primarily IFN-gamma, while STAT1(-/-)CD4(+) cells produce primarily IL-13. These findings suggest that STAT1 activation by both type I (alphabeta) and type II (gamma) IFNs plays an important role in establishing a protective, Th1 Ag-specific immune response to RSV infection.  相似文献   

15.
Hispid cotton rats were inoculated intranasally with either measles virus (MV) Edmonston, a multipassaged, tissue culture-adapted strain of MV, or with one of three clinical MV isolates that had limited passages (three to five times) in tissue culture cells. MV Edmonston was recovered from the lungs of every (n = 37) hispid cotton rat inoculated with this virus for at least 7 days after virus inoculation. Peak pulmonary titers occurred on Day +4 (3.3-4.4 log10/g lung). Scattered areas of inflammation were observed interstitially in lung sections from infected animals stained with hematoxylin and eosin, and a similar pattern of diffuse fluorescence was seen in cryostat sections stained with an indirect fluorescent antibody procedure specific for virus antigens. Fluorescent antibody and virus isolation studies on lung lavage cells both suggested that lung leukocytes were a primary target of the virus. In contrast to these findings, virus was isolated only sporadically from hispid cotton rats inoculated with any of the clinical measles virus isolates. Despite the restricted growth of MV in these animals, cotton rats may be useful for studying certain aspects of measles virus pathogenesis and for screening potential antiviral compounds in vivo.  相似文献   

16.
Abenes G  Chan K  Lee M  Haghjoo E  Zhu J  Zhou T  Zhan X  Liu F 《Journal of virology》2004,78(13):6891-6899
A pool of murine cytomegalovirus (MCMV) mutants was previously generated by using a Tn3-based transposon mutagenesis approach (X. Zhan, M. Lee, J. Xiao, and F. Liu, J. Virol. 74:7411-7421, 2000). In this study, one of the MCMV mutants, Rvm155, which contained the transposon insertion in open reading frame m155, was characterized in vitro for its replication in tissue culture and in vivo for its growth and virulence in immunodeficient SCID mice. Compared to the wild-type strain and a rescued virus that restored the m155 region, the mutant is significantly deficient in growth in many organs of the infected animals. At 21 days postinfection the titers of Rvm155 in the salivary glands, lungs, spleens, livers, and kidneys of the intraperitoneally infected SCID mice were lower than the titers of the wild-type virus and the rescued virus by 50-, 1,000-, 500-, 100-, and 500-fold, respectively. Moreover, the viral mutant was attenuated in killing the SCID mice, as none of the SCID mice that were intraperitoneally infected with Rvm155 died until 38 days postinfection while all the animals infected with the wild-type and rescued viruses died at 27 days postinfection. Our results provide the first direct evidence that a disruption of m155 expression leads to attenuation of viral virulence and growth in animals. Moreover, these results suggest that m155 is a viral determinant for optimal MCMV growth and virulence in vivo.  相似文献   

17.
Maternal anti-respiratory syncytial virus (RSV) antibodies acquired by the fetus through the placenta protect neonates from RSV disease through the first weeks of life. In the cotton rat model of RSV infections, we previously reported that immunization of dams during pregnancy with virus-like particles assembled with mutation stabilized pre-fusion F protein as well as the wild type G protein resulted in robust protection of their offspring from RSV challenge. Here we describe the durability of those protective responses in dams, the durability of protection in offspring, and the transfer of that protection to offspring of two consecutive pregnancies without a second boost immunization. We report that four weeks after birth, offspring of the first pregnancy were significantly protected from RSV replication in both lungs and nasal tissues after RSV challenge, but protection was reduced in pups at 6 weeks after birth. However, the overall protection of offspring of the second pregnancy was considerably reduced, even at four weeks of age. This drop in protection occurred even though the levels of total anti-pre-F IgG and neutralizing antibody titers in dams remained at similar, high levels before and after the second pregnancy. The results are consistent with an evolution of antibody properties in dams to populations less efficiently transferred to offspring or the less efficient transfer of antibodies in elderly dams.  相似文献   

18.
Resveratrol (RSV) is a dietary polyphenolic compound with several positive effects on metabolic functions and longevity. We tested the effect of RSV on the circadian clock in a nonhuman primate, the gray mouse lemur. The impact of a 2-week dietary supplementation of RSV on the rhythms of locomotor activity and body temperature in constant dark conditions (DD) was investigated in young (n = 7) and old (n = 6) animals. RSV supplementation followed 2 weeks in DD under normal diet (CTL). In both young and old animals receiving RSV, we observed a shortening of the free-running period compared to those under CTL (-15 minutes in young animals and -45 minutes in old animals), accompanied by a lower mean body temperature in both age groups and decreased locomotor activity in young animals. Thus, RSV is a food component capable of influencing a primate's circadian clock. This property may be of interest clinically in the context of the treatment of circadian disruption and in the context of the effects of RSV ingestion on health.  相似文献   

19.
Zhu J  Chen J  Hai R  Tong T  Xiao J  Zhan X  Lu S  Liu F 《Journal of virology》2003,77(5):2882-2891
We have recently generated a pool of murine cytomegalovirus (MCMV) mutants by using a Tn3-based transposon mutagenesis approach. In this study, one of the mutants, Rvm166, which contained the transposon sequence at open reading frame m166, was characterized both in tissue culture and in immunocompetent BALB/c mice and immunodeficient SCID mice. The viral mutant replicated as well as the wild-type Smith strain in vitro in NIH 3T3 cells, whereas the transposon insertion precluded the expression of >65% of the m166 open reading frame. Compared to the wild-type strain and a rescued virus that restored the m166 region, the viral mutant was significantly attenuated in growth in both BALB/c and SCID mice that were intraperitoneally infected with the viruses. At 21 days postinfection, the titers of the viral mutant in the salivary glands, lungs, spleens, livers, and kidneys of the infected SCID mice were lower than the titers of the Smith strain and the rescued virus by about 30000-, 10000-, 1000-, 300-, and 800-fold, respectively. Moreover, the virulence of the mutant virus appears to be severely attenuated because no death was found in SCID mice infected with the viral mutant up to 90 days postinfection, whereas all of the animals infected with the wild-type and rescued viruses died at 27 days postinfection. Our results suggest that m166 probably encodes a virulence factor and is required for MCMV virulence in killing SCID mice and for optimal viral growth in vivo.  相似文献   

20.
Airway damage and hyperreactivity induced during respiratory syncytial virus (RSV) infection can have a prolonged effect in infants and young children. These infections can alter the long-term function of the lung and may lead to severe asthma-like responses. In these studies, the role of IL-13 in inducing and maintaining a prolonged airway hyperreactivity response was examined using a mouse model of primary RSV infection. Using this model, there was evidence of significant airway epithelial cell damage and sloughing, along with mucus production. The airway hyperreactivity response was significantly increased by 8 days postinfection, peaked during days 10-12, and began to resolve by day 14. When the local production of Th1- and Th2-associated cytokines was examined, there was a significant increase, primarily in IL-13, as the viral response progressed. Treatment of RSV-infected mice with anti-IL-13 substantially inhibited airway hyperreactivity. Anti-IL-4 treatment had no effect on the RSV-induced responses. Interestingly, when IL-13 was neutralized, an early increase in IL-12 production was observed within the lungs, as was a significantly lower level of viral Ags, suggesting that IL-13 may be regulating an important antiviral pathway. The examination of RSV-induced airway hyperreactivity in STAT6(-/-) mice demonstrated a significant attenuation of the response, similar to the anti-IL-13 treatment. In addition, STAT6(-/-) mice had a significant alteration of mucus-producing cells in the airway. Altogether, these studies suggest that a primary factor leading to chronic RSV-induced airway dysfunction may be the inappropriate production of IL-13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号