首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Humans strongly depend on individual and social learning, both of which are highly effective and accurate. I study the effects of environmental change on the evolution of the effectiveness and accuracy of individual and social learning (individual and social learning levels) and the number of pieces of information learned individually and socially (individual and social learning capacities) by analyzing a mathematical model. I show that individual learning capacity decreases and social learning capacity increases when the environment becomes more stable; both decrease when the environment becomes milder. I also show that individual learning capacity increases when individual learning level increases or social learning level decreases, while social learning capacity increases when individual or social learning level increases. The evolution of high learning levels can be triggered when the environment becomes severe, but a high social learning level can evolve only when a high individual learning level can simultaneously evolve with it.  相似文献   

2.
The Stenogastrinae are a subfamily of the Vespidae. The main difference between these and other social wasps (Polistinae and Vespinae) is a jelly-like substance that the Stenogastrinae secrete from the Dufour 's gland and use in many functions of their biology. It is suggested that this substance greatly contributed to the evolution of social life in these wasps by making it possible to nourish the brood with liquid food and store it in the nest, thus favoring also the evolution of the behavioral mechanisms which facilitated interactions between adults. Social organization of the colonies may have been kept at a low level through a basic system of continuous temporary helper replacement, while the evolution of large colonies was restrained, as well as by the poor quality of construction material, low egg-laying capacity and limited production of abdominal substance, imperfect social regulatory mechanisms, and the absence of defensive mechanisms of the colonies against large predators.  相似文献   

3.
G. Malmberg 《Hydrobiologia》1986,132(1):23-29
The evolution of certain ontogenetic processes appears to be of special importance to subsequent evolution of a phyletic line, and their occurrence suggests there are various evolutionary capacity levels occupied by major taxa. Two groups that are at the same evolutionary capacity level probably originated in common within that level, which in turn is often shared with several other groups. Morphogenesis by invagination is characteristic of an early evolutionary capacity level common to poriferans, cnidarians, deuterostomes, and platyhelminths, inter alia. In the early ontogeny of the former three groups, this process produces the blastopore and archenteron, but in platyhelminths, e.g. rhabdocoels, two different processes form the digestive system: the mouth forms by invagination and the intestine by a split in the mesenchyme/parenchyma. I have selected some characters and processes to illustrate evolutionary capacity levels and to describe the possible origin of a number of invertebrate groups from various levels and their inter-relationships. My analysis on the basis of evolutionary capacity levels suggests that the deuterostomes originated early (very likely before mollusks and annelids), that tegumental absorption of nutriments is the original mode of nutriment uptake and so predates intestinal ingestion in Platyhelminthes, that ontogenetic characters show that the presumed origin of cercomeromorphaeans from rhabdocoels is improbable, and that features of ontogeny and life cycles indicate that the major parasitic platyhelminth classes arose through progressive rather than regressive evolution. Thus the non-parasitic and the parasitic platyhelminth classes very likely belong to separate evolutionary lines, all originating from the same evolutionary capacity level.  相似文献   

4.
Recent studies have shown that constraints on available resources may play an important role in the evolution of cooperation, especially when individuals do not posses the capacity to recognize other individuals, memory or other developed abilities, as it is the case of most unicellular organisms, algae or even plants. We analyze the evolution of cooperation in the case of a limiting resource, which is necessary for reproduction and survival. We show that, if the strategies determine a prisoner's dilemma, the outcome of the interactions may be modified by the limitation of resources allowing cooperators to invade the entire population. Analytic expressions for the region of cooperation are provided. Furthermore we derive expressions for the connection between fitness, as understood in evolutionary game theory, and resource exchanges, which may be of help to link evolutionary game theoretical results with resource based models.  相似文献   

5.
Community ecology and ecosystem ecology provide two perspectives on complex ecological systems that have largely complementary strengths and weaknesses. Merging the two perspectives is necessary both to ensure continued scientific progress and to provide society with the scientific means to face growing environmental challenges. Recent research on biodiversity and ecosystem functioning has contributed to this goal in several ways. By addressing a new question of high relevance for both science and society, by challenging existing paradigms, by tightly linking theory and experiments, by building scientific consensus beyond differences in opinion, by integrating fragmented disciplines and research fields, by connecting itself to other disciplines and management issues, it has helped transform ecology not only in content, but also in form. Creating a genuine evolutionary ecosystem ecology that links the evolution of species traits at the individual level, the dynamics of species interactions, and the overall functioning of ecosystems would give new impetus to this much-needed process of unification across ecological disciplines. Recent community evolution models are a promising step in that direction.  相似文献   

6.
城镇化和资源环境承载力耦合的时空演化是生态、地理、经济社会学等研究的重要内容之一,对促进城镇的可持续发展具有重要意义.为研究县域尺度上河西走廊城镇化与资源环境承载力协调度的空间分布格局,基于核密度分析、探索性分析、时空数据模型等方法,对该区域城镇化和资源环境承载力协调度的空间异质性及其动态演进过程进行了研究.结果表明:...  相似文献   

7.
Indirect reciprocity, one of the many mechanisms proposed to explain the evolution of cooperation, is the idea that altruistic actions can be rewarded by third parties. Upstream or generalized reciprocity is one type of indirect reciprocity in which individuals help someone if they have been helped by somebody else in the past. Although empirically found to be at work in humans, the evolution of upstream reciprocity is difficult to explain from a theoretical point of view. A recent model of upstream reciprocity, first proposed by Nowak and Roch (2007) and further analyzed by Iwagami and Masuda (2010), shows that while upstream reciprocity alone does not lead to the evolution of cooperation, it can act in tandem with mechanisms such as network reciprocity and increase the total level of cooperativity in the population. We argue, however, that Nowak and Roch's model systematically leads to non-uniform interaction rates, where more cooperative individuals take part in more games than less cooperative ones. As a result, the critical benefit-to-cost ratios derived under this model in previous studies are not invariant with respect to the addition of participation costs. We show that accounting for these costs can hinder and even suppress the evolution of upstream reciprocity, both for populations with non-random encounters and graph-structured populations.  相似文献   

8.
Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well‐researched organism allows dissection of the evolutionary process to identify causes of model failure – whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation – an especially useful augmentation to well‐researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution.  相似文献   

9.
A fractal renewal point process (FRPP) is used to model molecular evolution in agreement with the relationship between the variance and the mean numbers of nonsynonymous and synonymous substitutions in mammals. Like other episodic models such as the doubly stochastic Poisson process, this model accounts for the large variances observed in amino acid substitution rates, but unlike certain other episodic models, it also accounts for the increase in the index of dispersion with the mean number of substitutions in Ohta's (1995) data. We find that this correlation is significant for nonsynonymous substitutions at the 1% level and for synonymous substitutions at the 10% level, even after removing lineage effects and when using Bulmer's (1989) unbiased estimator of the index of dispersion. This model is simpler than most other overdispersed models of evolution in the sense that it is fully specified by a single interevent probability distribution. Interpretations in terms of chaotic dynamics and in terms of chance and selection are discussed. Received: 12 January 1998 / Accepted: 19 May 1998  相似文献   

10.
The theory of everything is discussed in relationship to early bacterial molecular evolution. The emphasis is on time, space (or location at the molecular level), the universal construction kit (elements contained in periodic table) and change per units of time that were necessary for early bacterial molecular evolution to occur.  相似文献   

11.
12.
The effects of the morphological constraint of maximum reproductive output (reproductive capacity) and the size at which individuals can avoid heavy mortality (refuge size) on the resource allocation pattern between growth and reproduction are investigated using a dynamic modelling approach for a population of Yoldia notabilis (Mollusca: Bivalvia) in Otsuchi Bay, northeastern Japan. A state variable model is developed using field data on shell length, somatic weight, production, survivorship and reproductive capacity of the bivalve. The optimal allocation pattern is characterized by sudden switching from growth to reproduction without the assumption of reproductive capacity, while simultaneous investment in growth and reproduction becomes optimal when maximum reproductive output is limited by reproductive capacity. Size-specific reproductive effort, size at maturity and the growth curve predicted by the latter model fit more closely to the field data, suggesting that size-limited reproductive capacity can play an important role in the evolution of the observed resource allocation pattern. The mortality pattern affects optimal size at maturity, but not size-specific reproductive effort after maturity. When refuge size is fixed, optimal size at maturity increases with survivorship above refuge size. Optimal size at maturity changes in a more complex way with changes in refuge size. Size at maturity remains constant when refuge size is small, increases when it is intermediate, and decreases when it is large. The results suggest that refuge size is an important factor in the evolution of size at maturity, although its contribution varies depending on the values of other factors, such as size-dependent production and survivorship above refuge size. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Cultural evolution is a complex process that can happen at several levels. At the level of individuals in a population, each human bears a set of cultural traits that he or she can transmit to its offspring (vertical transmission) or to other members of his or her society (horizontal transmission). The relative frequency of a cultural trait in a population or society can thus increase or decrease with the relative reproductive success of its bearers (individual’s level) or the relative success of transmission (called the idea’s level). This article presents a mathematical model on the interplay between these two levels. The first aim of this article is to explore when cultural evolution is driven by the idea’s level, when it is driven by the individual’s level and when it is driven by both. These three possibilities are explored in relation to (a) the amount of interchange of cultural traits between individuals, (b) the selective pressure acting on individuals, (c) the rate of production of new cultural traits, (d) the individual’s capacity to remember cultural traits and to the population size. The aim is to explore the conditions in which cultural evolution does not lead to a better adaptation of individuals to the environment. This is to contrast the spread of fitness-enhancing ideas, which make individual bearers better adapted to the environment, to the spread of “selfish” ideas, which spread well simply because they are easy to remember but do not help their individual bearers (and may even hurt them). At the same time this article explores in which conditions the adaptation of individuals is maximal. The second aim is to explore how these factors affect cultural diversity, or the amount of different cultural traits in a population. This study suggests that a larger interchange of cultural traits between populations could lead to cultural evolution not improving the adaptation of individuals to their environment and to a decrease of cultural diversity.  相似文献   

14.
For over a century, the paradigm has been that sex invariably increases genetic variation, despite many renowned biologists asserting that sex decreases most genetic variation. Sex is usually perceived as the source of additive genetic variance that drives eukaryotic evolution vis-à-vis adaptation and Fisher's fundamental theorem. However, evidence for sex decreasing genetic variation appears in ecology, paleontology, population genetics, and cancer biology. The common thread among many of these disciplines is that sex acts like a coarse filter, weeding out major changes, such as chromosomal rearrangements (that are almost always deleterious), but letting minor variation, such as changes at the nucleotide or gene level (that are often neutral), flow through the sexual sieve. Sex acts as a constraint on genomic and epigenetic variation, thereby limiting adaptive evolution. The diverse reasons for sex reducing genetic variation (especially at the genome level) and slowing down evolution may provide a sufficient benefit to offset the famed costs of sex.  相似文献   

15.
环渤海沿海地区土地承载力时空分异特征   总被引:15,自引:4,他引:11  
于广华  孙才志 《生态学报》2015,35(14):4860-4870
沿海地区是中国未来社会经济发展的重点区域,近年来沿海地区人地矛盾越来越突出,研究沿海地区土地承载力具有重要意义。针对以往评价中的不足,采用韦伯-费希纳定律确定指标评价标准;利用D-S证据理论进行主客观综合权重的计算,运用可变模糊集理论及模型对土地承载力进行综合评价,并以环渤海沿海地区进行实例分析。研究结果表明,2000—2011年,环渤海地区土地承载力整体呈持续上升趋势,但空间分布差异显著,天津、唐山、大连、盘锦、青岛、烟台、东营、威海土地承载力相对较高,锦州、营口、秦皇岛、滨州、潍坊、日照属于中等水平,沧州、丹东、葫芦岛四市土地承载力相对较低。可变模糊评价模型应用于土地承载力评价,计算简便,可操作性强,评价结果可信度高。  相似文献   

16.
Carlos M. Herrera 《Oikos》2002,97(3):426-432
The astounding morphological diversity exhibited by the fruits of vertebrate-dispersed plants has been traditionally interpreted as the adaptive outcome of divergent selective pressures exerted on plants by the broad array of frugivorous animals involved in seed dispersal. Although the selective capacity of frugivores provides support to this interpretation, recent studies have challenged it by documenting a strong phylogenetic component associated to interspecific variation in most fruit characteristics. Size-related fruit traits provide a conspicuous exception to this pattern, because they exhibit considerable variation at the between-species level which is largely independent of phylogeny and is correlated with consumption by differently-sized dispersal agents. Substantial species-level variance in size-related traits may reflect genuine disperser-driven diversification, but may also be partly influenced by correlated evolution of fruit size with the size of other plant structures. This latter possibility is tested here for bird-dispersed plants of the Iberian Peninsula using phylogenetically independent contrasts. Results demonstrate the existence of correlated evolution of fruit and leaf size at the species level. As all the plant taxa considered have their fruits eaten, and seeds dispersed, by the same relatively reduced set of frugivorous bird species, results suggest that a significant fraction of the variation in fruit size represented in the species sample may be explained as an indirect consequence of variation in leaf size, rather than being associated with adaptive divergence related to seed dispersal agents.  相似文献   

17.
The ontogenic evolution of chicken red cell Fc receptor was studied in red cells from different age chicken embryos, baby chicken, and adult chicken. The Fc receptor binding capacity for ligands, the number of Fc receptors by red cell, and the association constant between receptor and ligand were analyzed. The Fc receptor is expressed in the red cell surface of 6-day chicken embryo and its binding capacity for ligand—minimal at this moment—is increased in the 8-day chicken embryo red cells. The 12-day chicken embryo erythrocytes binding capacity is similar to the adult chicken red cells. The number of Fc receptors by red cell increase with the age of chicken embryo. After 9 days this number is not modified and it is the same as in adult chicken. Variations of Ko and binding capacity for ligands show a similar evolution in embryogenic development. From these data we suggest that although on Day 9 the number of receptors per cell is the same as in adult chicken, the receptors are not completely exposed at this time and as a consequence, their binding capacity for ligands is lower than in adult chicken erythrocytes.  相似文献   

18.
Watson RA  Pollack JB 《Bio Systems》2003,69(2-3):187-209
Several of the major transitions in evolutionary history, such as the symbiogenic origin of eukaryotes from prokaryotes, share the feature that existing entities became the components of composite entities at a higher-level of organization. This composition of pre-adapted extant entities into a new whole is a fundamentally different source of variation from the gradual accumulation of small random variations, and it has some interesting consequences for issues of evolvability. Intuitively, the pre-adaptation of sets of features in reproductively independent specialists suggests a form of 'divide and conquer' decomposition of the adaptive domain. Moreover, the compositions resulting from one level may become the components for compositions at the next level, thus scaling-up the variation mechanism. In this paper, we explore and develop these concepts using a simple abstract model of symbiotic composition to examine its impact on evolvability. To exemplify the adaptive capacity of the composition model, we employ a scale-invariant fitness landscape exhibiting significant ruggedness at all scales. Whilst innovation by mutation and by conventional evolutionary algorithms becomes increasingly more difficult as evolution continues in this landscape, innovation by composition is not impeded as it discovers and assembles component entities through successive hierarchical levels.  相似文献   

19.
Adaptive amplification   总被引:3,自引:0,他引:3  
Modern techniques are revealing that repetition of segments of the genome, called amplification or gene amplification, is very common. Amplification is found in all domains of life, and occurs under conditions where enhanced expression of the amplified genes is advantageous. Amplification extends the range of gene expression beyond that which is achieved by control systems. It also is reversible because it is unstable, breaking down by homologous recombination. Amplification is believed to be the driving force in the clustering of related functions, in that it allows them to be amplified together. Amplification provides the extra copies of genes that allow evolution of functions to occur while retaining the original function. Amplification can be induced in response to cellular stressors. In many cases, it has been shown that the genomic regions that are amplified include those genes that are appropriate to upregulate for a specific stressor. There is some evidence that amplification occurs as part of a broad, general stress response, suggesting that organisms have the capacity to induce structural changes in the genome. This then allows adaptation to the stressful conditions. The mechanisms by which amplification arises are now being studied at the molecular level, but much is still unknown about the mechanisms in all organisms. Recent advances in our understanding of amplification in bacteria suggests new interpretations of events leading to human copy number variation, as well as evolution in general.  相似文献   

20.
Chloroplast from greening potato tuber showed good photosynthetic capacity. The evolution of O2 was dependent upon the intensity of light. A light intensity of 30 lux gave maximum O2 evolution. At higher intensities inhibition was observed. The presence of bicarbonate in the reaction mixture was essential for O2 evolution. NADP was found to be a potent inhibitor of O2 evolution in this system. NADP and 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) inhibited the O2 evolution completely at a 3 μm concentration level, which was reversed by oxidized 2,6-dichlorophenol-indophenol (DCIP). Cyanide (CN)-treated chloroplasts showed full O2 evolution capacity, when a lipophilic electron acceptor like N-tetramethyl-p-phenylenediamine (TMPD) or DCIP was used along with ferricyanide. Ferricyanide alone showed only 20% reduction. NADP or DCMU could inhibit O2 evolution only when TMPD was the acceptor but not with DCIP. Photosystem II (PS II) isolated from these chloroplasts also showed inhibition by NADP or DCMU and its reversal by DCIP. Here also the evolution of O2 with only TMPD as acceptor was sensitive to NADP or DCMU. In the presence of added silicotungstate in PS II NADP or DCMU did not affect ferricyanide reduction or oxygen evolution. The chloroplasts were able to bind exogenously added NADP to the extent of 120 nmol/mg chlorophyll. It is concluded that the site of inhibition of NADP is the same as in DCMU, and it is between the DCIP and TMPD acceptor site in the electron transport from the quencher (Q) to plastoquinone (PQ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号