首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
The effect of field margins on the yield of sugar beet, wheat and barley was studied on commercial farms and in a series of field experiments from 1992–1997. There was always a trend of increasing yield from the edge of the field to the centre, with a marked reduction around the ‘tramlines’ and the area where machinery turns. In the studies on commercial farms, headland yield loss varied widely. In sugar beet the headlands yielded 19–41% less than the centre, with a mean reduction of 26%. In cereals the range was 3–19%, with a mean loss of 7%. Headland yield reductions were generally smaller in the field experiments than those found on commercial farms. These headland effects did not move towards the centre of the field when grass margins were planted at the edge of the field; there was no significant effect on the yield of the adjacent crop. The presence of boundary trees had the greatest effect on yield: in the outer 9 m of the field, the area shaded by trees produced 4.4 t ha-1 of wheat, and the area that was not shaded 8.1 t ha-1. Turning of machinery also significantly reduced yield, while grazing by rabbits and hares surprisingly had no effect. Following the reform of the Common Agricultural Policy in 1992, the main effect of which was to change from a price support policy to direct payments to producers, farmers in the European Union who produce more than a specified tonnage of ‘eligible crops’ per year, are required to fallow a given percentage of their land (currently 5%), to qualify for Arable Area Payments. Growers can elect to fallow fields on a rotational basis, or permanently. Headland set-aside is a term used to describe strips of set-aside, a minimum of 20 m wide around the edges of fields. In these experiments, the headland effect did not extend beyond 20 m from the field edge. Therefore, particularly in fields with boundary hedges or trees, headland set-aside could effectively remove the poor-yielding area at the field margin.  相似文献   

2.
The abundance and distribution of breeding birds were compared on paired fields comprising one set-aside field and one crop field, on 11 intensive arable farms in eastern and western England. A single observer made four visits to all set-aside and crop fields between April and July and recorded all birds seen during standardised counts and transects.
Rotational and non-rotational set-aside supported higher densities and more species of birds than fields of wheat, brassicas, root crops and seed rye. These differences in density, between set-aside and crops, were evident across a suit of species including waders, gamebirds, pigeons and passerines and were particularly marked on rotational set-aside. The majority of species recorded in fields away from boundaries would have been feeding rather than nesting there and higher bird densities on set-aside compared with adjacent arable crops probably reflects greater food abundance in the former.
The study is the first to demonstrate a clear habitat preference for set-aside by a wide range of bird species throughout the breeding season and it allows a number of recommendations to be made concerning the development of cost-effective agri-environment measures. The fact that the majority of birds utilised the outer 5 m, or in some cases 20 m, margin of the field suggests that many of the benefits of whole field set-aside may be derived from marginal strips. A slight, but not significant preference for rotational over non-rotational set-aside suggest such margins should be managed to maintain a patchy, relatively diverse sward of arable plants. A key feature of set-aside is the scale at which it has been incorporated into the arable landscape. Agri-enviromental schemes will only provide similar national benefits if they are implemented on a wide scale in such as way as to promote high uptake by farmers.  相似文献   

3.
Soil inhabiting pests and rot of feeding roots of sugar beet depending on rotation - Results of a long-term trial Over a period of 17 years a trial was carried out with sugar beet, cereals and oilseed rape in different crop rotations on a field near Göttingen (Lower Saxony). The frequency of sugar beet in the rotation was 17, 25, 33 and 67 %. In absence of beet nematodes, root and sugar yield of the beet decreased after repeated growing of sugar beet in short rotations compared to variants with long rotations. Sugar content and beet quality were only slightly influenced. By applying a bioassay (BW-Test) with young beet plants in the greenhouse it was shown that increasing infections on the tips of rootlets of the beet plants were the cause for decreasing beet yield in close rotations. Mortality of young beet plants and progress of infection in the test indicated roughly the quantity of pathogenic fungi in the soil. In the roots of the bait platits the parasitic fungus Aphanomyces cochlioides predominated. Rate of infection and yield reduction in the field were decisively influenced by weather conditions. Differences in yield between sugar beet grown in a three-year and a four-year rotation, however, were not significant. An occurrence of beet pests depending on crop rotation was stated only for Atomaria linearis and this only in a few years.  相似文献   

4.
The effects of herbicide management of genetically modified herbicide-tolerant (GMHT) beet, maize and spring oilseed rape on the abundance and diversity of soil-surface-active invertebrates were assessed. Most effects did not differ between years, environmental zones or initial seedbanks or between sugar and fodder beet. This suggests that the results may be treated as generally applicable to agricultural situations throughout the UK for these crops. The direction of the effects was evenly balanced between increases and decreases in counts in the GMHT compared with the conventional treatment. Most effects involving a greater capture in the GMHT treatments occurred in maize, whereas most effects involving a smaller capture were in beet and spring oilseed rape. Differences between GMHT and conventional crop herbicide management had a significant effect on the capture of most surface-active invertebrate species and higher taxa tested in at least one crop, and these differences reflected the phenology and ecology of the invertebrates. Counts of carabids that feed on weed seeds were smaller in GMHT beet and spring oilseed rape but larger in GMHT maize. In contrast, collembolan detritivore counts were significantly larger under GMHT crop management.  相似文献   

5.
C. Eraud  J-M. Boutin 《Bird Study》2013,60(3):287-296
Capsule Small field size and the maintenance of set-aside and lucerne are important to ensure high breeding pair densities and productivity.

Aims To investigate the effects of crop types and their attributes on density and productivity of breeding Skylark.

Methods At each of four selected study sites in western France, territory density, vegetation height, vegetation cover and field size was estimated by field and attempts were made to find nests. Crop types included winter and spring cereals, oilseed rape, sunflower, maize, grass, lucerne, set-aside, and bare ground.

Results About 80% of Skylark territories included more than one crop type. Birds preferred small fields and territory density decreased with increasing field size. Density was highest in crops with low vegetation height and cover. Set-aside, lucerne and grass supported highest territory density. Fledging productivity was highest in set-aside and lucerne, and was zero on bare ground. Skylark density decreased throughout the breeding season (-26% in 1999 and -29% in 2000), suggesting an instability in territory distribution or activity in intensive farmland.

Conclusions Farming systems that decrease field size and increase set-aside and lucerne instead of oilseed rape, maize and sunflower will benefit Skylark and other declining farmland species.  相似文献   

6.
1. A study of skylark Alauda arvensis L. breeding ecology in relation to crop type was carried out from April to August 1992 on arable land in southern England. Set-aside land was included in this comparative study.
2. Territory density averaged 0·15 ha−1. It was 2–3 times higher in fields of set-aside and grass, especially permanent pasture, than in winter and spring-sown cereals.
3. Territory size was nearly twice as large in fields of winter cereals (4·5 ha) than in other crop types (2·5 ha). Where set-aside was present on one farm, territory size in set-aside (1·7 ha) was a third lower than in cereals and grass.
4. Nesting began in set-aside and permanent pasture in April and peaked in late May. Nesting was not detected in spring barley until late May and in silage grass until early June. The density of successful nests in set-aside fields was more than double that in any of the arable crop types.
5. Average clutch size at hatching was 3·91 eggs in fields of set-aside, over 15% higher than in silage grass (3·40) and in spring barley (3·27).
6. Fledging success did not differ according to crop type, but productivity, expressed as the number of fledglings produced per hectare, was 0·50 in set-aside, 0·13 in silage grass, and 0·21 in spring barley. Nests with chicks were not found in fields of winter cereals. The causes of chick death were thought to be predation in set-aside fields, farming practices in silage grass fields, and suspected starvation in spring cereals.
7. The potentially high nesting success of skylarks in set-aside implies that sympathetic set-aside management could play an important part in reversing its decline across the European Union.  相似文献   

7.
Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop‐type specifics only with respect to crop residues. This meta‐analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N‐fertilization rates, but interyear and site‐specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha?1 yr?1, the mean fraction of fertilizer N that was lost as N2O‐N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield‐scaled N2O emissions increased after a critical N surplus of about 80 kg N ha?1 yr?1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop‐type classes of cereals or other crops should be reconsidered.  相似文献   

8.
A methodology is proposed for calculating the net land area requirement for European biofuels, accounting for the substitution impact of animal feed protein coproducts such as dried distillers grains and solubles (DDGS) and rape meal. For example, when bioethanol is produced from cereal grain starch, grain protein is preserved in the DDGS coproduct. Each tonne of wheat DDGS has the potential to replace 0.59 tonnes of soy meal and 0.39 tonnes of cereals in EU animal feed, and the land area required for soy and cereal feed production offsets much of the land requirement for wheat bioethanol feedstock. While the land area needed for bioethanol from feed wheat in North West Europe is 0.40 ha t?1, the net requirement after accounting for coproducts is just 0.03ha t?1 of bioethanol produced, 6% of the gross land requirement. Calculated in this way, the net land area required to produce biofuel from EU cereal, rapeseed and sugar beet crops is much lower than the gross land requirement, and from cereal and sugar beet crops is less than the land requirement of biofuel from oil palm and sugar cane.  相似文献   

9.
We compared the effects of the management of genetically modified herbicide-tolerant (GMHT) and conventional beet, maize and spring oilseed rape on 12 weed species. We sampled the seedbank before and after cropping. During the season we counted plants and measured seed rain and biomass. Ratios of densities were used to calculate emergence, survival, reproduction and seedbank change. Treatments significantly affected the biomass of six species in beet, eight in maize and five in spring oilseed rape. The effects were generally consistent, with biomass lower in GMHT beet and spring oilseed rape and higher in GMHT maize. With few exceptions, emergence was higher in GMHT crops. Subsequent survival was significantly lowered for eight species in beet and six in spring oilseed rape in the GMHT treatments. It was increased for five species in maize and one in spring oilseed rape. Significant effects on seedbank change were found for four species. However, for many species in beet and spring oilseed rape (19 out of 24 cases), seed densities were lower in the seedbank after GMHT cropping. These differences compounded over time would result in large decreases in population densities of arable weeds. In maize, populations may increase.  相似文献   

10.
The incidence of beet mild yellowing luteovirus (BMYV) and non-beet-infecting strains of beet western yellows luteovirus (BWYV) in individual winged aphids, caught in yellow water-traps, in sugar beet during the spring and early summer, and in oilseed rape plots in the autumn, was monitored using monoclonal antibodies in ELISA tests from 1990 to 1993. Between 0% and 8% of the Myzus persicae trapped in sugar beet each year carried BMYV, whereas 0% to 4% caught in oilseed rape in the autumn contained this virus. In 1990, 6.5% of Macrosiphum euphorbiae trapped in sugar beet contained BMYV, but in subsequent years less than 1% were carrying virus. Much higher proportions (26–67%) of the M. persicae tested from sugar beet contained BWYV, and similar proportions tested from oilseed rape (24–45%) also carried this virus in the autumn. In contrast only 3–19% of the M. euphorbiae caught in sugar beet contained BWYV, and none in oilseed rape. In 1991 and 1992 large numbers of Breuicoryne brassicae were caught in the plot of oilseed rape, of which over 50% contained BWYV; none were carrying BMYV. In transmission studies between 1990 and 1992, 1% and 27% of M. persicae transmitted BMYV and BWYV respectively to indicator plants; subsequent ELISA tests on the same aphids showed that 3% and 33% respectively contained the two viruses. One percent of M. euphorbiae transmitted BMYV, but none were found to contain BMYV using ELISA; 15% transmitted BWYV whilst only 5% were found to carry the virus. In 1992 and 1993 the incidence of BMYV-infection in the sugar-beet fields in which aphids had been trapped ranged from 1.2%, in a field which had received granular pesticide (aldicarb) at drilling plus three foliar aphicidal sprays, to 39.5% in a field which had received only one foliar spray. In 1992 in a sugar-beet crop which had received no aphicidal treatments, and where 2.8% of immigrant M. persicae and 2.5% of M. euphorbiae contained BMYV, 11.6% of plants developed BMYV infection. Lowest levels of infection were associated with the use of granular pesticides at drilling. In 1990, 80% of oilseed rape plants in a field plot were infested with a mean of seven wingless M. persicae per plant by mid-December; 37% of these plants were infected with BWYV. The studies show that M. persicae is the principal vector of BWYV, and large proportions of winged M. persicae carry the virus, in contrast to BMYV, which is consistent with the common occurrence of BWYV in brassica crops such as oilseed rape.  相似文献   

11.
The sequences of cDNA clones covering the coat protein genes of 29 isolates of beet mild yellowing virus from sugar beet and beet western yellows virus mainly from oilseed rape were compared. The sequences could be partitioned into seven distinct clusters falling into three main groups. Group 1 isolates were found both in oilseed rape and sugar beet mainly from north Europe; group 2 isolates were from hosts other than sugar beet in England and France; group 3 isolates were beet-specific and found from northern Italy and Iran. The factors affecting this variation and its significance in relation to coat protein-mediated protection are discussed.  相似文献   

12.
Effects of genetically modified herbicide-tolerant (GMHT) and conventional crop management on invertebrate trophic groups (herbivores, detritivores, pollinators, predators and parasitoids) were compared in beet, maize and spring oilseed rape sites throughout the UK. These trophic groups were influenced by season, crop species and GMHT management. Many groups increased twofold to fivefold in abundance between early and late summer, and differed up to 10-fold between crop species. GMHT management superimposed relatively small (less than twofold), but consistent, shifts in plant and insect abundance, the extent and direction of these effects being dependent on the relative efficacies of comparable conventional herbicide regimes. In general, the biomass of weeds was reduced under GMHT management in beet and spring oilseed rape and increased in maize compared with conventional treatments. This change in resource availability had knock-on effects on higher trophic levels except in spring oilseed rape where herbivore resource was greatest. Herbivores, pollinators and natural enemies changed in abundance in the same directions as their resources, and detritivores increased in abundance under GMHT management across all crops. The result of the later herbicide application in GMHT treatments was a shift in resource from the herbivore food web to the detritivore food web. The Farm Scale Evaluations have demonstrated over 3 years and throughout the UK that herbivores, detritivores and many of their predators and parasitoids in arable systems are sensitive to the changes in weed communities that result from the introduction of new herbicide regimes.  相似文献   

13.
We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land‐use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first‐generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second‐generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio‐physical factors (e.g. the energy density of the crop) and socio‐economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation.  相似文献   

14.
Oilseed rape (Brassica napus L. ssp. oleifera) was studied as a potential overwintering host for the sugar-beet yellowing viruses, beet yellows virus (BYV) and beet mild yellowing virus (BMYV), and their principal vector, Myzus persicae. In spring 1982, plants infected with a virus which reacted positively in enzyme-linked immunosorbent assay (ELISA) with BMYV antibody globulin were found in oilseed-rape crops; none of the plants contained virus which reacted with BYV antibody globulin. This virus was subsequently identified as beet western yellows virus (BWYV). No leaf symptoms could be consistently associated with infection of oilseed rape, but the virus was reliably detected by sampling any leaf on an infected oilseed-rape plant. Some isolates from oilseed rape did infect sugar beet in glasshouse tests, but the proportions of inoculated plants which became infected were low. Apparently there is therefore little danger of much direct transmission of BWYV by M. persicae from oilseed rape to sugar beet in spring. BWYV was introduced to and spread within oilseed-rape crops in autumn by M. persicae, and autumn-sown oilseed rape proved to be a potentially important overwintering host for M. persicae. In a survey of 80 autumn-sown crops of oilseed rape in East Anglia, northern England and Scotland in spring 1983, 78 were shown to be extensively infected with BWYV. Experimental plots of oilseed rape with 100% BWYV-infection yielded approximately 13.4% less oil than plots with 18% virus infection, the result of a decrease in both seed yield and oil content.  相似文献   

15.
The Farm Scale Evaluations of genetically modified herbicide-tolerant crops (GMHT) were conducted in the UK from 2000 to 2002 on beet (sugar and fodder), spring oilseed rape and forage maize. The management of the crops studied is described and compared with current conventional commercial practice. The distribution of field sites adequately represented the areas currently growing these crops, and the sample contained sites operated at a range of management intensities, including low intensity. Herbicide inputs were audited, and the active ingredients used and the rates and the timings of applications compared well with current practice for both GMHT and conventional crops. Inputs on sugar beet were lower than, and inputs on spring oilseed rape and forage maize were consistent with, national averages. Regression analysis of herbicide-application strategies and weed emergence showed that inputs applied by farmers increased with weed densities in beet and forage maize. GMHT crops generally received only one herbicide active ingredient per crop, later and fewer herbicide sprays and less active ingredient (for beet and maize) than the conventional treatments. The audit of inputs found no evidence of bias.  相似文献   

16.
The implementation of co-existence in the commercialisation of GM crops requires GM and non-GM products to be segregated in production and supply. However, maintaining segregation in oilseed rape will be made difficult by the highly persistent nature of this species. An understanding of its population dynamics is needed to predict persistence and develop potential strategies for control, while to ensure segregation is being achieved, the production of GM oilseed rape must be accompanied by the monitoring of GM levels in crop or seed populations. Heterogeneity in the spatial distribution of oilseed rape has the potential to affect both control and monitoring and, although a universal phenomenon in arable weeds and harvested seed lots, spatial heterogeneity in oilseed rape populations remains to be demonstrated and quantified. Here we investigate the distribution of crop and volunteer populations in a commercial field before and during the cultivation of the first conventional oilseed rape (winter) crop since the cultivation of a GM glufosinate-tolerant oilseed rape crop (spring) three years previously. GM presence was detected by ELISA for the PAT protein in each of three morphologically distinguishable phenotypes: autumn germinating crop-type plants (3% GM), autumn-germinating 'regrowths' (72% GM) and spring germinating 'small-type' plants (17% GM). Statistical models (Poisson log-normal and binomial logit-normal) were used to describe the spatial distribution of these populations at multiple spatial scales in the field and of GM presence in the harvested seed lot. Heterogeneity was a consistent feature in the distribution of GM and conventional oilseed rape. Large trends across the field (50 x 400 m) and seed lot (4 x 1.5 x 1.5 m) were observed in addition to small-scale heterogeneity, less than 20 m in the field and 20 cm in the seed lot. The heterogeneity was greater for the 'regrowth' and 'small' phenotypes, which were likely to be volunteers and included most of the GM plants detected, than for the largely non-GM 'crop' phenotype. The implications of the volunteer heterogeneity for field management and GM-sampling are discussed.  相似文献   

17.
A functional group approach was developed for plant and invertebrate assemblages from UK arable fields to assess the variation in functional composition of these highly disturbed, managed systems. Data were taken from the Farm-Scale Evaluations (FSE) of genetically modified herbicide-tolerant (GMHT) crops where the impact of management of the GMHT crop has been assessed for winter and spring sown oilseed rape, beet and maize. Twenty plant and 36 invertebrate functional groups were defined according to trophic behaviour and traits that affect resource capture, quality and availability. The functional composition of the plant community was significantly affected by season of sowing, the type of crop sown and, to a lesser extent, herbicide management. The invertebrate community composition was also affected by crop type and sowing season, but not by management. Resource and consumer groups were positively related, and data provide strong evidence for top-down control of herbivore populations. Two main interaction groups were identified within the arable food web: one between omnivores, generalist predators and detritivores, which are positively associated with monocots, and one between omnivores, parasitoids, sap feeders and leaf chewers, which have a stronger association with dicots. Although management has an impact on within-field arable biodiversity, crop type and sowing season have an overriding effect on the functional composition of plant and invertebrate assemblages in arable systems.  相似文献   

18.
World population and the need for nutritious food continue to grow. For 14 years farmers from a range of countries across the globe have been accessing transgenic technologies either to reduce crop production costs, increase yield and/or to exploit a range of rotational benefits. In 2009 134 Mha of transgenic crops was grown. The arable area of the EU 27 is approximately 102 Mha; however, only about 0.1 Mha of transgenic crops, mainly maize in Spain, is grown in the EU. This is in part due to limited approvals before the establishment of a moratorium on the cultivation of transgenic crops. In this paper we estimate the revenue foregone by EU farmers, based on the potential hectarages of IR and HT transgenic crops that have been economically successful elsewhere if they were to be grown in areas of the EU where farmers could expect an overall financial benefit. This benefit would accrue primarily from reduced input costs. We estimate that if the areas of transgenic maize, cotton, soya, oil seed rape and sugar beet were to be grown where there is agronomic need or benefit then farmer margins would increase by between €443 and €929 M/year. It is noted that this margin of revenue foregone is likely to increase if the current level of approval and growth remains low, as new transgenic events come to market and are rapidly taken up by farmers in other parts of the world.  相似文献   

19.
Biofuels offer one method for decreasing emissions of carbon dioxide (CO2) from fossil fuels, thus helping to meet UK and EU targets for mitigating climate change. They also provide a rational option for land use within the EU that could be economically viable, provided that an appropriate financial and policy environment is developed. If 80% of current set‐aside land in the UK were used for production of biomass crops for electricity generation, about 3% of current UK electricity demand could be met from this source. Considering possibilities for increasing yields and land area devoted to such crops over the coming decades, this could possibly rise to 12%. These estimates exclude consideration of developments in electricity generation which should increase the efficiency of conversion. Also, the use of combined heat and power units at local level (e.g. on farms or in rural communities) gives additional energy saving. Dedicated biomass crops such as willow, poplar, miscanthus, switchgrass or reed canary grass are perennials: in comparison with annual arable crops they would be expected to deliver additional environmental benefits. The elimination of annual cultivation should give a more stable environment, beneficial for farmland biodiversity. Some increase in soil organic matter content is likely, leading to some sequestration of carbon in soil and long‐term improvements in soil quality. The impact on water quality may be positive as nitrate losses are small and a similar trend is expected for phosphate and pesticides. However, these crops may well use more water than arable crops so their impact on water resources could be negative – an issue for further research. Agricultural land can also be used to produce liquid fuels for use in transport. At present biodiesel can be produced from oilseed rape and ethanol from either sucrose in sugar beet or cellulose from virtually any plant material. In the short‐term, liquid biofuels are an easy option as they require little change to either agriculture or transport infrastructure. However, their benefits for CO2 emissions are much less than for biomass used for generating electricity. It is therefore necessary to debate the priorities for land use in this context.  相似文献   

20.
The effects of management of genetically modified herbicide-tolerant (GMHT) crops on adjacent field margins were assessed for 59 maize, 66 beet and 67 spring oilseed rape sites. Fields were split into halves, one being sown with a GMHT crop and the other with the equivalent conventional non-GMHT crop. Margin vegetation was recorded in three components of the field margins. Most differences were in the tilled area, with fewer smaller effects mirroring them in the verge and boundary. In spring oilseed rape fields, the cover, flowering and seeding of plants were 25%, 44% and 39% lower, respectively, in the GMHT uncropped tilled margins. Similarly, for beet, flowering and seeding were 34% and 39% lower, respectively, in the GMHT margins. For maize, the effect was reversed, with plant cover and flowering 28% and 67% greater, respectively, in the GMHT half. Effects on butterflies mirrored these vegetation effects, with 24% fewer butterflies in margins of GMHT spring oilseed rape. The likely cause is the lower nectar supply in GMHT tilled margins and crop edges. Few large treatment differences were found for bees, gastropods or other invertebrates. Scorching of vegetation by herbicide-spray drift was on average 1.6% on verges beside conventional crops and 3.7% beside GMHT crops, the difference being significant for all three crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号