首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The effect of argemone oil on hsp70expression and tissue damage was investigated by studying β-galactosidase activity, Western blotting and hybridization, and trypan blue staining in the larval tissues of transgenic Drosophila melanogaster(hsp70-lacZ)Bg 9. Different concentrations of argemone oil were mixed with food and third-instar larvae were allowed to feed on them for different time intervals (2, 4, 24, and 48 h). Argemone oil was found to induce hsp70even in the lowest concentration of the adulterant while maximum tissue damage was observed in the higher two treatment groups. Malpighian tubules and midgut tissue reflected maximum damage as evidenced by both high β-galactosidase activity and trypan blue staining in these tissues. A prior temperature shock treatment to the larvae was enough to protect the larvae from argemone oil-induced tissue damage as evidenced by little or no trypan blue staining. The present study suggests the cytotoxic potential of argemone oil and further strengthens the evidence for the use of hsp70as a biomarker in risk assessment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
This study investigated the working hypothesis that two widely used organophosphate pesticides; Nuvan and Dimecron, exert toxic effects in Drosophila. Transgenic D. melanogaster (hsp70-lacZ) was used as a model for assaying stress gene expression and AchE activity as an endpoint for toxicity and also to evaluate whether stress gene expression is sufficient to protect against toxic insult of the chemicals and to prevent tissue damage. The study was extended to investigate the effect of the pesticides on the life cycle and reproduction of the organism. The study showed that Nuvan affected emergence of the exposed flies more drastically than Dimecron and the effect was lethal at the highest tested concentration (0.075 ppm). While Nuvan at 0.0075 and 0.015 ppm concentrations affected reproduction of the flies significantly, the effect of Dimecron was significant only at 0.015 and 0.075 ppm. Nuvan-exposed third-instar larvae exhibited a 1.2-fold to 1.5-fold greater hsp70 expression compared to Dimecron at concentrations ranging from 0.0075 to 0.075 ppm following 12 and 18 h exposure. While maximum expression of hsp70 was observed in Nuvan-exposed third-instar larval tissues following 18 h exposure at 0.075 ppm, Dimecron at the same dietary concentration induced a maximum expression of hsp70 following 24 h exposure. Further, concomitant with a significant induction of hsp70, significant inhibition of AchE was observed following chemical exposure and temperature shock. Concurrent with a significant decline in hsp70 expression in Nuvan-exposed larvae after 48 h at 0.075 ppm, tissue damage was evident. Dimecron-exposed larvae exhibited a plateau in hsp70 induction even after 48 h exposure and moderate tissue damage was observed in these larvae. The present study suggests that Nuvan is more cytotoxic than Dimecron in transgenic Drosophila melanogaster.  相似文献   

3.
Heat shock protein induction is often associated with a cellular response to a harmful environment or to adverse life conditions. The main aims of our study were (1) to evaluate the cytotoxic potential of cypermethrin; and (2) to investigate the suitability of stress-induced heat shock protein Hsp70 as a biomarker for environmental pollutants in transgenic Drosophila melanogaster (Hsp70-lacZ)Bg9. Different concentrations of cypermethrin (0.002, 0.2, 0.5 and 50.0 p.p.m.) were mixed with food. Third instar larvae of transgenic Drosophila melanogaster were allowed to feed on these mixtures for different time intervals (2, 4, 6, 12, 24 and 48h). Following feeding, hsp70 induction and tissue damage were evaluated. In the highest concentration treatment group (50 p.p.m.), 100% larval mortality was recorded after 12 h exposure. Hsp70 was found to be induced even at the lowest concentration (0.002 p.p.m.) of the insecticide, while tissue damage was observed in the larvae exposed for 48 h. While an insignificant decline in hsp70 expression was observed in the larvae exposed to cypermethrin at a dietary concentration of 0.002 p.p.m. after 48 h compared with those exposed for 24 h, in the next two higher concentrations of the toxicant, a similar but significant decline in hsp70 expression was evident in the exposed larvae after 48 h. The present study reveals the cytotoxic potential of cypermethrin and further proposes that hsp70 induction in transgenic Drosophila melanogaster could be used as a sensitive biomarker in risk assessment.  相似文献   

4.
Heat shock protein induction is often associated with a cellular response to a harmful environment or to adverse life conditions. The main aims of our study were (1) to evaluate the cytotoxic potential of cypermethrin; and (2) to investigate the suitability of stress-induced heat shock protein Hsp70 as a biomarker for environmental pollutants in transgenic Drosophila melanogaster (Hsp70-lacZ)Bg9. Different concentrations of cypermethrin (0.002, 0.2, 0.5 and 50.0 p.p.m.) were mixed with food. Third instar larvae of transgenic Drosophila melanogaster were allowed to feed on these mixtures for different time intervals (2, 4, 6, 12, 24 and 48h). Following feeding, hsp70 induction and tissue damage were evaluated. In the highest concentration treatment group (50 p.p.m.), 100% larval mortality was recorded after 12 h exposure. Hsp70 was found to be induced even at the lowest concentration (0.002 p.p.m.) of the insecticide, while tissue damage was observed in the larvae exposed for 48 h. While an insignificant decline in hsp70 expression was observed in the larvae exposed to cypermethrin at a dietary concentration of 0.002 p.p.m. after 48 h compared with those exposed for 24 h, in the next two higher concentrations of the toxicant, a similar but significant decline in hsp70 expression was evident in the exposed larvae after 48 h. The present study reveals the cytotoxic potential of cypermethrin and further proposes that hsp70 induction in transgenic Drosophila melanogaster could be used as a sensitive biomarker in risk assessment.  相似文献   

5.
We explored the reproductive toxicity of argemone oil and its principal alkaloid fraction in transgenic Drosophila melanogaster (hsp70-lacZ) Bg(9). The toxicity of argemone oil has been attributed to two of its physiologically active benzophenanthridine alkaloids, sanguinarine and dihydrosanguinarine. Freshly eclosed first instar larvae of transgenic Drosophila melanogaster were transferred to different concentrations of argemone oil and its alkaloid fraction contaminated food. Virgin flies that eclosed from the contaminated food were pair-mated to look into the effect on reproduction. The study was further extended by investigating hsp70 expression and tissue damage in larval gonads, genital discs, and reproductive organs of adult fly. Our results showed that argemone oil was more cytotoxic than its principal alkaloid fraction. Moreover, it was the male fly that was more affected compared to its opposite number. The accessory glands of male reproductive system of the fly, which did not express hsp70, exhibited severe damage as evidenced by Trypan blue staining. This prompted us to explore the ultrastructural morphology of the gland, which showed acute signs of necrosis in both the cell types as evident by necrotic nuclei, higher vacuolization, and disorganized endoplasmic reticulum, decrease in the number of Golgi vesicles and disorganized, loosely packed filamentous structures in the lumen of the accessory gland, at the higher concentrations of the adulterant. The study showed the reproductive toxicity of argemone oil and its alkaloid fraction in transgenic Drosophila melanogaster and further confirmed the cytoprotective role of hsp70.  相似文献   

6.
7.
Graphene, a two-dimensional carbon sheet with single-atom thickness, have attracted the scientific world for its potential applications in various field including the biomedical areas. In the present study the graphene copper nanocomposite (GCNC) was synthesized, characterized and evaluated for its toxic potential on third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. The synthesized GCNC was analyzed by X-ray diffraction (XRD), scanning/transmission electron microscopy (SEM/TEM), atomic force microscopy (AFM), and fourier transform infrared spectroscopy (FTIR). The GCNC in 0.1% DMSO was sonicated for 10 min and the final concentration of 0.033, 0.099, 0.199 and 3.996 µg/µl of diet were established. The third instar larvae were allowed to feed on it separately for 24 and 48 hrs. The hsp70 expression was measured by O-nitrophenyl-β-D-galactopyranoside assay, tissue damage by trypan blue exclusion test and β-galactosidase activity was monitored by in situ histochemical β-galactosidase staining. Oxidative stress was monitored by performing lipid peroxidation assay and total protein estimation. Ethidium bromide/acridine orange staining was performed on midgut cells for apoptotic index and the comet assay was performed for the DNA damage. The results of the present study showed that the exposure of 0.199 and 3.996 µg/µl of GCNC were toxic for 24 hr of exposure and for 48 hr of exposure: 0.099, 0.199 and 3.996 µg/µl of GCNC was toxic. The dose of 0.033 µg/µl of GCNC showed no toxic effects on its exposure to the third instar larvae for 24 hr as well as 48 hrs. This dose can be considered as No Observed Adverse Effect Level (NOAEL).  相似文献   

8.
9.
We tested a working hypothesis that stress genes and anti-oxidant enzyme machinery are induced by the organophosphate compound dichlorvos in a non-target organism. Third instar larvae of Drosophila melanogaster transgenic for hsp70 were exposed to 0.1 to 100.0 ppb dichlorvos and 5.0 mM CuSO(4) (an inducer of oxidative stress and stress genes) and hsp70, and activities of acetylcholinesterase (AchE), superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPO) product were measured. The study was further extended to examine tissue damage, if any, under such conditions. A concentration- and time-dependent increase in hsp70 and anti-oxidant enzymes was observed in the exposed organism as compared to control. A comparison of stress gene expression with SOD, CAT activities and LPO product under similar experimental conditions revealed that induction of hsp70 precedes the anti-oxidant enzyme activities in the exposed organism. Further, concomitant with a significant inhibition of AChE activity, significant induction of hsp70 was observed following chemical exposure. Mild tissue damage was observed in the larvae exposed to 10.0 ppb dichlorvos for 48 h when hsp70 expression reaches plateau. Dichlorvos at 0.1 ppb dietary concentration did not evoke significant hsp70 expression, anti-oxidant enzymes and LPO and AchE inhibition in the exposed organism, and thereby, was found to be non-hazardous to D. melanogaster. Conversely, 1.0 ppb of the test chemical stimulated a significant induction of hsp70 and anti-oxidant enzymes and significant inhibition of AchE; hence this concentration of test chemical was hazardous to the organism. The present study suggests that (a) both stress genes and anti-oxidant enzymes are stimulated as indices of cellular defense against xenobiotic hazard in D. melanogaster with hsp70 being proposed as first-tier bio-indicator of cellular hazard, (b) 0.1 ppb of the test chemical may be regarded as No Observed Adverse Effect Level (NOAEL), and 1.0 ppb dichlorvos as Low Observed Adverse Effect Level (LOAEL).  相似文献   

10.
Elevation of body temperature by 2–3°C induces a 2.7 kilobase hsp70 mRNA species in the rabbit retina within 1 hr. In situ hybridization with thin sections derived from plastic-embedded tissue permitted a higher level of resolution of retinal cell types compared to procedures which involved the use of frozen tissue sections. A prominent induction of hsp70 mRNA in retinal ganglion cells was observed when an hsp70 riboprobe was utilized for in situ hybridization. These results indicate that this neuronal cell type responds rapidly to fever-like body temperatures by inducing one of the major heat shock genes.  相似文献   

11.
Summary 1. Altered mRNA levels in postmortem brain tissue from persons with Alzheimer's disease (AD) or other neurological diseases are usually presumed to be characteristic of the disease state, even though both agonal state (the physiological state immediately premortem) and postmortem interval (PMI) (the time between death and harvesting the tissue) have the potential to affect levels of mRNAs measured in postmortem tissue. Although the possible effect of postmortem interval on mRNA levels has been more carefully evaluated than that of agonal state, many studies assume that all mRNAs have similar rates of degradation postmortem.2. To determine the postmortem stability of inducible heat shock protein 70 (hsp70) mRNAs, themselves unstablein vivo at normal body temperature, rats were heat shocked in order to induce synthesis of the hsp70 mRNAs. hsp70 mRNA levels in cerebellum and cortex were then compared to those of their heat shock cognate 70 (hsc70) mRNAs, as well as to levels of 18S rRNAs, at 0 and at 24 hr postmortem.3. Quantiation of northern blots after hybridization with an hsp70 mRNA-specific oligo probe indicated a massive loss of hsp70 mRNA signal in RNAs isolated from 24-hr postmortem brains; quantitation by slot-blot hybridization was 5- to 15-fold more efficient. Even using the latter technique, hsp70 mRNA levels were reduced by 59% in 24-hr-postmortem cerebellum and by 78% in cortex compared to mRNA levels in the same region of 0-hr-postmortem brain. There was little reduction postmortem in levels of the hsp70 mRNAs or of 18S rRNAs in either brain region.4.In situ hybridization analysis indicated that hsp70 mRNAs were less abundant in all major classes of cerebellar cells after 24 hr postmortem and mRNAs had degraded severalfold more rapidly in neurons than in glia. There was no corresponding loss of intracellular 18S rRNA in any cell type.5. We conclude from these results that the effect of postmortem interval on mRNA degradation must be carefully evaluated when analyzing levels of inducible hsp70 mRNAs, and perhaps other short-lived mRNAs, in human brain.  相似文献   

12.
13.
14.
为深入理解杀虫剂胁迫对烟粉虱Bemisia tabaci适应逆境能力的影响, 本研究运用实时荧光定量PCR技术测定了LC25, LC50和LC75 3种浓度的烯啶虫胺、 毒死蜱和高效氯氰菊酯分别处理对烟粉虱地中海隐种B. tabaci Mediterranean成虫体内热激蛋白hsp70表达水平的影响。结果表明: 在低温(15℃)条件下, LC50和LC75的烯啶虫胺、 毒死蜱、 高效氯氰菊酯可显著诱导烟粉虱地中海隐种hsp70的表达量增加, 此后随时间延长hsp70表达量逐渐下降, 到72 h时恢复到对照水平, 但LC25的3种杀虫剂对hsp70的表达无明显影响; 在常温(25℃)下, 较高浓度(LC50和LC75)的烯啶虫胺、 毒死蜱和高效氯氰菊酯处理24 h同样可促进hsp70表达量的增加, 然后hsp70表达量逐渐下降, 到72 h时恢复至正常水平, 但低浓度(LC25)的3种药剂处理后hsp70表达量随时间延长而增加, 到72 h时达到最高; 在高温(32℃)条件下, LC25和LC50的烯啶虫胺、 毒死蜱和高效氯氰菊酯处理24 h可显著增强hsp70的表达水平, 此后随时间的延长hsp70表达恢复至正常水平。杀虫药剂诱导的hsp70表达量增加增强了烟粉虱地中海隐种对杀虫药剂和高温的耐受能力, 这可能是导致其在我国快速扩张的原因之一。  相似文献   

15.
Naturally occurring heat shock (HS) during pupation induces abnormal wing development in Drosophila; we examined factors affecting the severity of this induction. The proportion of HS-surviving adults with abnormal wings varied with HS duration and intensity, and with the pupal age or stage at HS administration. Pretreatment (PT), mild hyperthermia delivered before HS, usually protected development against HS. Gradual heating resembling natural thermal regimes also protected wing development against thermal disruption. Because of the roles of the wings in flight and courtship and in view of natural thermal regimes that Drosophila experience, both HS-induction of wing abnormalities and its abatement by PT may have marked effects on Drosophila fitness in nature. Because PT is associated with expression of heat-inducible molecular chaperones such as Hsp70 in Drosophila, we compared thermal disruption of wing development among hsp70 mutants as well as among strains naturally varying in Hsp70 levels. Contrary to expectations, lines or strains with increased Hsp70 levels were no more resistant to HS-disruption of wing development than counterparts with lower Hsp70 levels. In fact, wing development was more resistant to HS in hsp70 deletion strains than control strains. We suggest that, while high Hsp70 levels may aid cells in surviving hyperthermia, high levels may also overly stimulate or inhibit numerous signalling pathways involved in cell proliferation, maturation and programmed death, resulting in developmental failure.  相似文献   

16.
Heat shock protein genes, hsp90, hsc70, and hsp19.5, were cloned and sequenced from the diamondback moth, Plutella xylostella (L.) by RT-PCR and RACE method. The cDNA sequence analysis of hsp90 and hsp19.5 revealed open reading frames (ORFs) of 2,151 and 522 bp in length, which encode proteins with calculated molecular weights of 82.4 and 19.5 kDa, respectively. Analysis of cDNA from hsc70 revealed an ORF of 1,878 bp coding a protein with a calculated molecular weight of 69.3 kDa. Furthermore, the analysis of genomic DNA from hsc70 confirmed the presence of introns while no introns were apparent in hsp90 and hsp19.5. Southern blot analysis suggested the presence of multiple copies of each gene family in the DBM genome. Detectable expression of hsp19.5 was observed at the pupal stage while expression of hsp90 and hsc70 was detected at both pupal and adult stages. At adult stage, females showed a higher expression of hsp90 and hsc70 than males. An increased expression was observed in all three genes after exposure to a high temperature in both sexes. These results suggest that in addition to a heat shock response, these HSP genes might be involved in other functions during the course of development in DBM.  相似文献   

17.
 The hsp60 (heat-shock protein 60) gene family of molecular chaperones has been a subject of study in numerous systems due to its important role in the correct folding of non-native proteins in development as well as after heat-shock treatment. Here we present the characterization of the first Drosophila hsp60 homologue. Drosophila HSP60 is most closely related (72% identity across the entire protein sequence) to the mouse mitochondrial HSP60. Western blot experiments indicate that Drosophila HSP60 is enriched in the mitochondrial fraction. The distribution of HSP60 protein is dynamic during fly embryogenesis, suggesting that various cell types might have different HSP60 requirements. The molecular analysis of a P-element-induced mutation that affects the l(1)10Ac locus shows that the transposon is inserted in a 3-kb intron present in the hsp60 gene. By genetic rescue experiments we prove that Drosophila HSP60 is encoded by the essential locus l(1)10Ac opening the possibility for detailed genetic analysis of HSP60 functions in the fly. Received: 24 March 1997 / Accepted: 16 June 1997  相似文献   

18.
We examined a hypothesis that reactive oxygen species (ROS) generated by organophosphate compound dichlorvos modulates Hsp70 expression and anti-oxidant defense enzymes and acts as a signaling molecule for apoptosis in the exposed organism. Dichlorvos (0.015-15.0 ppb) without or with inhibitors of Hsp70, superoxide dismutase (SOD) and catalase (CAT) were fed to the third instar larvae of Drosophila melanogaster transgenic for hsp70 (hsp70-lacZ) Bg(9) to examine Hsp70 expression, oxidative stress and apoptotic markers. A concentration- and time-dependent significant increase in ROS generation accompanied by a significant upregulation of Hsp70 preceded changes in antioxidant defense enzyme activities and contents of glutathione, malondialdehyde and protein carbonyl in the treated organisms. An inhibitory effect on SOD and CAT activities significantly upregulated ROS generation and Hsp70 expression in the exposed organism while inhibition of Hsp70 significantly affected oxidative stress markers induced by the test chemical. A comparison made among ROS generation, Hsp70 expression and apoptotic markers showed that ROS generation is positively correlated with Hsp70 expression and apoptotic cell death end points indicating involvement of ROS in the overall adversity caused by the test chemical to the organism. The study suggests that (a) Hsp70 and anti-oxidant enzymes work together for cellular defense against xenobiotic hazard in D. melanogaster and (b) free radicals may modulate Hsp70 expression and apoptosis in the exposed organism.  相似文献   

19.
Juvenile haddock Melanogrammus aeglefinus ( c. 39 g) were exposed to either a handling stressor (1 min out of water) or heat shock (increase from 10 to 15° C for 1 h), and plasma cortisol, plasma glucose and gill hsp70 levels were determined before, and at 1, 3, 6, 12, 24 and 48 h post-stress. The pattern of cortisol increase was similar following both stressors, with levels increasing by 25-fold at 1 h post-stress, but returning to pre-stress levels (2–5 ng ml−1) by 3 h. In contrast, neither handling nor heat shock caused an increase in plasma glucose levels. Although gill hsp70 was detected, presumably constitutive levels, in both control and heat shocked groups, there were not significant changes in gill hsp70 levels after exposure to heat shock. The lack of glucose and hsp70 responses to these typical stressors is consistent with previous studies on Atlantic cod Gadus morhua , and suggests that the stress physiology of Gadidae differs from the 'typical' teleost.  相似文献   

20.
A clone isolated from a Drosophila auraria heat-shock cDNA library presents two long, antiparallel, coupled (LAC) open reading frames (ORFs). One strand ORF is 1,929 nucleotides long and exhibits great identity (87.5% at the nucleotide level and 94% at the amino acid level) with the hsp70 gene copies of D. melanogaster, while the second strand ORF, in antiparallel in-frame register arrangement, is 1,839 nucleotides long and exhibits 32% identity with a putative, recently identified, NAD+-dependent glutamate dehydrogenase (NAD+-GDH). The overlap of the two ORFs is 1,824 nucleotides long. Computational analysis shows that this LAC ORF arrangement is conserved in other hsp70 loci in a wide range of organisms, raising questions about possible evolutionary benefits of such a peculiar genomic organization.Correspondence to: Z.G. Scouras  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号