首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The L1 Ta subfamily of long interspersed elements (LINEs) consists exclusively of human-specific L1 elements. Polymerase chain reaction-based screening in nonhuman primate genomes of the orthologous sites for 249 human L1 Ta elements resulted in the recovery of various types of sequence variants for approximately 12% of these loci. Sequence analysis was employed to capture the nature of the observed variation and to determine the levels of gene conversion and insertion site homoplasy associated with LINE elements. Half of the orthologous loci differed from the predicted sizes due to localized sequence variants that occurred as a result of common mutational processes in ancestral sequences, often including regions containing simple sequence repeats. Additional sequence variation included genomic deletions that occurred upon L1 insertion, as well as successive mobile element insertions that accumulated within a single locus over evolutionary time. Parallel independent mobile element insertions at orthologous loci in distinct species may introduce homoplasy into retroelement-based phylogenetic and population genetic data. We estimate the overall frequency of parallel independent insertion events at L1 insertion sites in seven different primate species to be very low (0.52%). In addition, no cases of insertion site homoplasy involved the integration of a second L1 element at any of the loci, but rather largely involved secondary insertions of Alu elements. No independent mobile element insertion events were found at orthologous loci in the human and chimpanzee genomes. Therefore, L1 insertion polymorphisms appear to be essentially homoplasy free characters well suited for the study of population genetics and phylogenetic relationships within closely related species.  相似文献   

2.
3.
We compared sex chromosomal and autosomal regions of similar GC contents and found that the human Y chromosome contains nine times as many full-length (FL) ancestral LINE-1 (L1) elements per megabase as do autosomes and that the X chromosome contains three times as many. In addition, both sex chromosomes contain a ca. twofold excess of elements that are >500 bp but not long enough to be capable of autonomous replication. In contrast, the autosomes are not deficient in short (<500 bp) L1 elements or SINE elements relative to the sex chromosomes. Since neither the Y nor the X chromosome, when present in males, can be cleared of deleterious genetic loci by recombination, we conclude that most FL L1s were deleterious and thus subject to purifying selection. Comparison between nonrecombining and recombining regions of autosome 21 supported this conclusion. We were able to identify a subset of loci in the human DNA database that once contained active L1 elements, and we found by using the polymerase chain reaction that 72% of them no longer contain L1 elements in a representative of each of eight different ethnic groups. Genetic damage produced by both L1 retrotransposition and ectopic (nonallelic) recombination between L1 elements could provide the basis for their negative selection.  相似文献   

4.
LINE-1 methylation patterns of different loci in normal and cancerous cells   总被引:1,自引:1,他引:0  
This study evaluated methylation patterns of long interspersed nuclear element-1 (LINE-1) sequences from 17 loci in several cell types, including squamous cell cancer cell lines, normal oral epithelium (NOE), white blood cells and head and neck squamous cell cancers (HNSCC). Although sequences of each LINE-1 are homologous, LINE-1 methylation levels at each locus are different. Moreover, some loci demonstrate the different methylation levels between normal tissue types. Interestingly, in some chromosomal regions, wider ranges of LINE-1 methylation levels were observed. In cancerous cells, the methylation levels of most LINE-1 loci demonstrated a positive correlation with each other and with the genome-wide levels. Therefore, the loss of genome-wide methylation in cancerous cells occurs as a generalized process. However, different LINE-1 loci showed different incidences of HNSCC hypomethylation, which is a lower methylation level than NOE. Additionally, we report a closer direct association between two LINE-1s in different EPHA3 introns. Finally, hypermethylation of some LINE-1s can be found sporadically in cancer. In conclusion, even though the global hypomethylation process that occurs in cancerous cells can generally deplete LINE-1 methylation levels, LINE-1 methylation can be influenced differentially depending on where the particular sequences are located in the genome.  相似文献   

5.
6.
LINE-1: a mammalian transposable element   总被引:36,自引:0,他引:36  
  相似文献   

7.
The pattern of nucleotide substitution was examined at 2,129 orthologous loci among five genomes of Staphylococcus aureus, which included two sister pairs of closely related genomes (MW2/MSSA476 and Mu50/N315) and the more distantly related MRSA252. A total of 108 loci were unusual in lacking any synonymous differences among the five genomes; most of these were short genes encoding proteins highly conserved at the amino acid sequence level (including many ribosomal proteins) or unknown predicted genes. In contrast, 45 genes were identified that showed anomalously high divergence at synonymous sites. The latter genes were evidently introduced by homologous recombination from distantly related genomes, and in many cases, the pattern of nucleotide substitution made it possible to reconstruct the most probable recombination event involved. These recombination events introduced genes encoding proteins that differed in amino acid sequence and thus potentially in function. Several of the proteins are known or likely to be involved in pathogenesis (e.g., staphylocoagulase, exotoxin, Ser-Asp fibrinogen-binding bone sialoprotein-binding protein, fibrinogen and keratin-10 binding surface-anchored protein, fibrinogen-binding protein ClfA, and enterotoxin P). Therefore, the results support the hypothesis that exchange of homologous genes among S. aureus genomes can play a role in the evolution of pathogenesis in this species.  相似文献   

8.
Long interspersed nuclear elements (LINEs) comprise about 21% of the human genome (of which L1 is most abundant) and are preferentially accumulated in AT-rich regions, as well as the X and Y chromosomes. Most knowledge of L1 distribution in mammals is restricted to human and mouse. Here we report the first investigation of L1 distribution in the genomes of a wide variety of eutherian mammals, including species in the two basal clades, Afrotheria and Xenarthra. Our results show L1 accumulation on the X of all eutherian mammals, an observation consistent with an ancestral involvement of these elements in the X-inactivation process (the Lyon repeat hypothesis). Surprisingly, conspicuous accumulation of L1 in AT-rich regions of the genome was not observed in any species outside of Euarchontoglires (represented by human, mouse and rabbit). Although several features were common to most species investigated, our comprehensive survey shows that the patterns observed in human and mouse are, in many aspects, far from typical for all mammals. We discuss these findings with reference to models that have previously been proposed to explain the AT distribution bias of L1 in human and mouse, and how this relates to the evolution of these elements in other eutherian genomes.Paul D. Waters and Gauthier Dobigny contributed equally to this work  相似文献   

9.
Comparative mapping of chicken and human genomes is described, primarily of regions corresponding to human chromosomes 1, 4 and 9. Segments of chicken orthologues of selected human genes were amplified from parental DNA of the East Lansing backcross reference mapping population, and the two parental alleles were sequenced. In about 80% of the genes tested, sequence polymorphism was identified between reference population parental DNAs. The polymorphism was used to design allele-specific primers with which to genotype the backcross panel and place genes on the chicken linkage map. Thirty-seven genes were mapped which confirmed the surprisingly high level of conserved synteny between orthologous chicken and human genes. In several cases the order of genes in conserved syntenic groups differs between the two genomes, suggesting that there may have been more frequent intrachromosomal inversions as compared with interchromosomal translocations during the separate evolution of avian and mammalian genomes.  相似文献   

10.
Subfamily-specific LINE-1 PCR (SSL1-PCR) is the targeted amplification and cloning of defined subfamilies of LINE-1 elements and their flanking sequences. The targeting is accomplished by incorporating a subfamily-specific sequence difference at the 3 end of a LINE-1 PCR primer and pairing it with a primer to an anchor ligated within the flanking region. SSL1-PCR was demonstrated by targeting amplification of a Mus spretus-specific LINE-1 subfamily. The amplified fragments were cloned to make an SSL1-PCR library, which was found to be 100-fold enriched for the targeted elements. PCR primers were synthesized based on the sequence flanking the LINE-1 element of four different clones. Three of the clones were recovered from Mus spretus DNA. A fourth clone was recovered from a congenic mouse containing both Mus spretus and Mus domesticus DNA. Amplification between these flanking primers and LINE-1 PCR primers produced a product in Mus spretus and not in Mus domesticus. These dimorphisms were further verified to be due to insertion of Mus spretus-specific LINE-1 elements into Mus spretus DNA and not into Mus domesticus DNA.  相似文献   

11.
Some previously unidentified short interspersed repetitive elements (SINEs) and long interspersed repetitive element (LINEs) were isolated from various higher elasmobranchs (sharks, skates, and rays) and characterized. These SINEs, members of the HE1 SINE family, were tRNA-derived and were widespread in higher elasmobranches. The 3'-tail region of this SINE family was strongly conserved among elasmobranchs. The LINEs, members of the HER1 LINE family, encoded an amino acid sequence similar to that encoded by the chicken CR1 LINE family, and they contained a strongly conserved 3'-tail region in the 3' untranslated region. This tail region of the HER1 LINE family was almost identical to that of the HE1 SINE family. Thus, the HE1 SINE family and the HER1 LINE family provide a clear example of a pair of SINEs and LINEs that share the same tail region. Conservation of the secondary structures of the tail regions, as well as of the nucleotide sequences, between the HE1 SINE family and HER1 LINE family during evolution suggests that SINEs utilize the enzymatic machinery for retroposition of LINEs through the recognition of higher-order structures of the conserved 3'-tail region. A discussion is presented of the parasitism of SINEs on LINEs during the evolution of these retroposons.  相似文献   

12.
LINE-1 (L1) retrotransposons are the most abundant type of mammalian retroelement. They have profound effects on genome plasticity and have been proposed to fulfill essential host functions, yet it remains unclear where they lie on the spectrum from parasitism to mutualism. Their ubiquity makes it difficult to determine the extent of their effects on genome evolution and gene expression because of the relative dearth of animal models lacking L1 activity. We have isolated L1 sequences from 11 megabat species by a method that enriches for recently inserted L1s and have done a bioinformatic examination of L1 sequences from a 12th species whose genome was recently shotgun sequenced. An L1 extinction event appears to have occurred at least 24 million years ago (MYA) in an ancestor of the megabats. The ancestor was unusual in having maintained two highly divergent long-term L1 lineages with different levels of activity, which appear, on an evolutionary scale, to have simultaneously lost that activity. These megabat species can serve as new animal models to ask what effect loss of L1 activity has on mammalian genome evolution and gene expression.  相似文献   

13.
The classification of the long terminal repeats (LTRs) of the human endogenous retrovirus HERV-K (HML-2) family was refined according to diagnostic differences between the LTR sequences. The mutation rate was estimated to be approximately equal for LTRs belonging to different families and branches of human endogenous retroviruses (HERVs). An average mutation rate value was calculated based on differences between LTRs of the same HERV and was found to be 0.13% per million years (Myr). Using this value, the ages of different LTR groups belonging to the LTR HML-2 subfamily were found to vary from 3 to 50Myr. Orthologous potential LTR-containing loci from different primate species were PCR amplified using primers corresponding to the genomic sequences flanking LTR integration sites. This allowed us to calculate the phylogenetic times of LTR integrations in primate lineages in the course of the evolution and to demonstrate that they are in good agreement with the LTR ages calculated from the mutation rates. Human-specific integrations for some very young LTRs were demonstrated. The possibility of LTRs and HERVs involvement in the evolution of primates is discussed.  相似文献   

14.
LINE-1 (L1) lineages in the mouse   总被引:2,自引:0,他引:2  
Recently, a rapidly amplifying family of mouse LINE-1 (L1) has been identified and named T(F). The evolutionary context surrounding the derivation of the T(F) family was examined through phylogenetic analysis of sequences in the 3' portion of the repeat. The Mus musculus domesticus T(F) family was found to be the terminal subfamily of the previously identified L1Md4 lineage. The L1Md4 lineage joins the other prototypical mouse LINE-1 lineage (the L1MdA2 lineage) approximately 1 MYA at about the time of the common ancestor of M. m. domesticus, Mus spicilegus, and Mus spretus. However, the T(F) family from M. m. domesticus was found to join to the previously reported M. spretus Ms475 and Ms7024 LINE-1 families at just 0.5 MYA, indicating horizontal transfer. The T(F) family from M. m. domesticus was then found to be even more recently related to LINE-1's from another species, M. spicilegus. A separate spretus A2 lineage was found through a directed search of a PCR library. This lineage, in contrast to the spretus T(F) lineage, does join domesticus at about 1 MYA, as would be expected in the absence of horizontal transfer. A third major family was also found that splits off from the L1Md4 lineage shortly after its departure from the L1MdA2 lineage. The new family, named the Z family, was found to contain the de novo LINE-1 inserts causing the beige and med mutations. Whether the split with the Z family was before or after the recombination that introduced the F-type promoters and defined the inception of T(F) as a lineage is unclear. In enumerating copies of the various LINE-1 families, we found that T(F) 3' ends were not much more numerous than the reported number of 5' ends, suggesting that T(F) may not be subjected to the 90% truncation pattern typical of LINE-1 as a whole.  相似文献   

15.
16.
《Neuron》2022,110(20):3278-3287.e8
  1. Download : Download high-res image (185KB)
  2. Download : Download full-size image
  相似文献   

17.
The preTa subfamily of long interspersed elements (LINEs) is characterized by a three base-pair "ACG" sequence in the 3' untranslated region, contains approximately 400 members in the human genome, and has low level of nucleotide divergence with an estimated average age of 2.34 million years old suggesting that expansion of the L1 preTa subfamily occurred just after the divergence of humans and African apes. We have identified 362 preTa L1 elements from the draft human genomic sequence, investigated the genomic characteristics of preTa L1 insertions, and screened individual elements across diverse human populations and various non-human primate species using polymerase chain reaction (PCR) assays to determine the phylogenetic origin and levels of human genomic diversity associated with the L1 elements. All of the preTa L1 elements analyzed by PCR were absent from the orthologous positions in non-human primate genomes with 33 (14%) of the L1 elements being polymorphic with respect to insertion presence or absence in the human genome. The newly identified L1 insertion polymorphisms will prove useful as identical by descent genetic markers for the study of human population genetics. We provide evidence that preTa L1 elements show an integration site preference for genomic regions with low GC content. Computational analysis of the preTa L1 elements revealed that 29% of the elements amenable to complete sequence analysis have apparently escaped 5' truncation and are essentially full-length (approximately 6kb). In all, 29 have two intact open reading frames and may be capable of retrotransposition.  相似文献   

18.
Adaptive Evolution in LINE-1 Retrotransposons   总被引:8,自引:1,他引:8  
We traced the sequence evolution of the active lineage of LINE-1(L1) retrotransposons over the last  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号