首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TPMP is a noncompetitive inhibitor of the nicotinic acetycholine receptor which blocks agonist-induced ion flux by directly interacting with the receptor's ion channel. By activation with UV light it can be made to react covalently with its binding site in the receptor protein. Here a method is described to perform this photolabeling with a time resolution comparable to the physiological event of channel opening and closing. By this technique structural transitions within the receptor can be visualized and transient conformational states can be labeled covalently and irreversibly.  相似文献   

2.
In bacteria, MscS-type mechanosensitive channels serve to protect cells from lysis as they swell during extreme osmotic stress. We recently showed that two MscS homologs from Arabidopsis thaliana serve a similar purpose in the epidermal plastids of the leaf, indicating that the plant cell cytoplasm can present a dynamic osmotic challenge to the plastid. MscS homologs are predicted to be targeted to both plastids and mitochondrial envelopes and have been found in the genomes of intracellular pathogens. Here we discuss the implications of these observations, and propose that MS channels provide an essential mechanism for osmotic adaptation to both intracellular and the extracellular environments.  相似文献   

3.
4.
Summary For patch-clamp measurements cultured kidney (OK) cells were exposed to osmotic and mechanical stress. Superfusion of a cell in whole cell configuration with hypotonic media (190 mOsm) evokes strong depolarization, which is reversible by returning to the isotonic bath medium. In the cell-attached configuration the exposure to hypotonic media evokes up to six ion channels of homogeneous single-channel properties in the membrane patch. Subsequently, the channels became activated after a time lag of a few seconds. At an applied membrane potential of 0 mV, the corresponding membrane current is directed inward and shows a transient behavior in the time range of minutes. In the same membrane patch these ion channels can be activated by application of negative hydrostatic pressure. The channel has a single-channel conductance of about 22 pS and is permeable to Na+ and K+ as well as to Cl. It is suggested that volume regulation involves mechanoreceptor-operated ion channels.  相似文献   

5.
Techniques routinely utilized in this laboratory for recording currents through single ionic channels of isolated atrial and ventricular rat cardiomyocytes are described. Emphasis is placed in two main areas: first, on methods for obtaining a sufficient yield of Ca++-tolerant myocytes suitable for patch clamp experiments, and secondly, on methods for analyzing the temporal characteristics of patched ionic channels. These methods were used on acetylcholine activated K+ channels in isolated atrial myocytes and on an inwardly-rectifying K+ channel in ventricular myocytes. The latter is an example of a hormonally modulated K+ channel, since its activity could be substantially increased by norepinephrine. Analysis of the closed and open time distributions suggested that one of the closed states of this channel is markedly abbreviated by norepinephrine, whereas the open state is nearly unaffected. Norepinephrine was effective when channel activity was recorded from on-cell patches and the hormone was added to the solution bathing the cell membrane outside of the patched area. This indicates that a second messenger substance is probably mediating the action of norepinephrine.  相似文献   

6.
Recent years have seen considerable progress in identifying anion channel activities in higher plant cells. This review outlines the functional properties of plasma membrane anion channels in plant cells and discusses their likely roles in root function. Plant anion channels can be grouped according to their voltage dependence and kinetics: (1) depolarization-activated anion channels which mediate either anion efflux (R and S types) or anion influx (outwardly rectifying type); (2) hyperpolarization-activated anion channels which mediate anion efflux, and (3) anion channels activated by light or membrane stretch. These types of anion channel are apparent in root cells where they may function in anion homeostasis, membrane stabilization, osmoregulation, boron tolerance and regulation of passive salt loading into the xylem vessels. In addition, roots possess anion channels exhibiting unique properties which are consistent with them having specialized functions in root physiology. Most notable are the organic anion selective channels, which are regulated by extracellular Al3+ or the phosphate status of the plant. Finally, although the molecular identities of plant anion channels remain elusive, the diverse electrophysiological properties of plant anion channels suggest that large and diverse multigene families probably encode these channels.  相似文献   

7.
Burykin A  Schutz CN  Villá J  Warshel A 《Proteins》2002,47(3):265-280
Realistic studies of ion current in biologic channels present a major challenge for computer simulation approaches. All-atom molecular dynamics simulations involve serious time limitations that prevent their use in direct evaluation of ion current in channels with significant barriers. The alternative use of Brownian dynamics (BD) simulations can provide the current for simplified macroscopic models. However, the time needed for accurate calculations of electrostatic energies can make BD simulations of ion current expensive. The present work develops an approach that overcomes some of the above challenges and allows one to simulate ion currents in models of biologic channels. Our method provides a fast and reliable estimate of the energetics of the system by combining semimacroscopic calculations of the self-energy of each ion and an implicit treatment of the interactions between the ions, as well as the interactions between the ions and the protein-ionizable groups. This treatment involves the use of the semimacroscopic version of the protein dipole Langevin dipole (PDLD/S) model in its linear response approximation (LRA) implementation, which reduces the uncertainties about the value of the protein "dielectric constant." The resulting free energy surface is used to generate the forces for on-the-fly BD simulations of the corresponding ion currents. Our model is examined in a preliminary simulation of the ion current in the KcsA potassium channel. The complete free energy profile for a single ion transport reflects reasonable energetics and captures the effect of the protein-ionized groups. This calculated profile indicates that we are dealing with the channel in its closed state. Reducing the barrier at the gate region allows us to simulate the ion current in a reasonable computational time. Several limiting cases are examined, including those that reproduce the observed current, and the nature of the productive trajectories is considered. The ability to simulate the current in realistic models of ion channels should provide a powerful tool for studies of the biologic function of such systems, including the analysis of the effect of mutations, pH, and electric potentials.  相似文献   

8.
In the last decade, the idea of common organization of certain ion channel families exhibiting diverse physiological and pharmacological properties has received strong experimental support. Transmembrane topologies and patterns of the pore-facing residues are conserved in P-loop channels that include high-selective cation channels and certain ligand-gated channels. X-ray structures of bacterial K+ channels, KcsA, MthK and KvAP, help to understand structure-function relationships of other P-loop channels. Data on binding sites and mechanisms of action of ligands of K+, Na+, Ca2+ and glutamate gated ion channels are considered in view of their possible structural similarity to the bacterial K+ channels. Emphasized are structural determinants of ligand-receptor interactions within the channels and mechanisms of state-dependent action of the ligands.  相似文献   

9.
Activation of large conductance Ca(2+)-activated K(+) channels is controlled by both cytoplasmic Ca(2+) and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca(2+)-activated K(+) currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca(2+) (<1 nM). In response to a voltage step, I(K) activates with an exponential time course, following a brief delay. The delay suggests that rapid transitions precede channel opening. The later exponential time course suggests that activation also involves a slower rate-limiting step. However, the time constant of I(K) relaxation [tau(I(K))] exhibits a complex voltage dependence that is inconsistent with models that contain a single rate limiting step. tau(I(K)) increases weakly with voltage from -500 to -20 mV, with an equivalent charge (z) of only 0.14 e, and displays a stronger voltage dependence from +30 to +140 mV (z = 0.49 e), which then decreases from +180 to +240 mV (z = -0.29 e). Similarly, the steady state G(K)-V relationship exhibits a maximum voltage dependence (z = 2 e) from 0 to +100 mV, and is weakly voltage dependent (z congruent with 0.4 e) at more negative voltages, where P(o) = 10(-5)-10(-6). These results can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. In the absence of Ca(2+), this allosteric mechanism results in a gating scheme with five closed (C) and five open (O) states, where the majority of the channel's voltage dependence results from rapid C-C and O-O transitions, whereas the C-O transitions are rate limiting and weakly voltage dependent. These conclusions not only provide a framework for interpreting studies of large conductance Ca(2+)-activated K(+) channel voltage gating, but also have important implications for understanding the mechanism of Ca(2+) sensitivity.  相似文献   

10.
To examine a possible relation between the swelling-induced ATP release pathway and the volume-sensitive Cl(-) channel, we measured the extracellular concentration of ATP released upon osmotic swelling and whole-cell volume-sensitive Cl(-) currents in a human epithelial cell line, Intestine 407, which lacks expression of cystic fibrosis transmembrane conductance regulator (CFTR). Significant release of ATP was observed within several minutes after a hypotonic challenge (56-80% osmolality) by the luciferin/luciferase assay. A carboxylate analogue Cl(-) channel blocker, 5-nitro-2-(3-phenylpropylamino)-benzoate, suppressed ATP release in a concentration-dependent manner with a half-maximal inhibition concentration of 6.3 microM. However, swelling-induced ATP release was not affected by a stilbene-derivative Cl(-) channel blocker, 4-acetamido-4'-isothiocyanostilbene at 100 microM. Glibenclamide (500 microM) and arachidonic acid (100 microM), which are known to block volume-sensitive outwardly rectifying (VSOR) Cl(-) channels, were also ineffective in inhibiting the swelling-induced ATP release. Gd(3+), a putative blocker of stretch-activated channels, inhibited swelling-induced ATP release in a concentration-dependent manner, whereas the trivalent lanthanide failed to inhibit VSOR Cl(-) currents. Upon osmotic swelling, the local ATP concentration in the immediate vicinity of the cell surface was found to reach approximately 13 microM by a biosensor technique using P2X(2) receptors expressed in PC12 cells. We have raised antibodies that inhibit swelling-induced ATP release from Intestine 407 cells. Earlier treatment with the antibodies almost completely suppressed swelling-induced ATP release, whereas the activity of VSOR Cl(-) channel was not affected by pretreatment with the antibodies. Taking the above results together, the following conclusions were reached: first, in a CFTR-lacking human epithelial cell line, osmotic swelling induces ATP release and increases the cell surface ATP concentration over 10 microM, which is high enough to stimulate purinergic receptors; second, the pathway of ATP release is distinct from the pore of the volume-sensitive outwardly rectifying Cl(-) channel; and third, the ATP release is not a prerequisite to activation of the Cl(-) channel.  相似文献   

11.
Summary This report details preliminary findings for ion channels in the plasma membrane of protoplasts derived from the cotyledons ofAmaranthus seedlings. The conductance properties of the membrane can be described almost entirely by the behavior of two types of ion channel observed as single channels in attached and detached patches. The first is a cation-selective outward rectifier, and the second a multistate anion-selective channel which, under physiological conditions, acts as an inward rectifier.The cation channel has unit conductance of approx. 30 pS (symmetrical 100 K+) and relative permeability sequence K+>Na+>Cl (10.160.03); whole-cell currents activate in a time-dependent manner, and both activation and deactivation kinetics are voltage dependent. The anion channel opens for hyperpolarized membrane potentials, has a full-level conductance of approx. 200 pS and multiple subconductance states. The number of sub-conductances does not appear to be fixed. When activated the channel is open for long periods, though shuts if the membrane potential (V m ) is depolarized; at millimolar levels of [Ca2+]cyt this voltage dependency disappears. Inward current attributable to the anion channel is not observed in whole-cell recordings when MgATP (2mm) is present in the intracellular solution. By contrast the channel is active in most detached patches, whether MgATP is present or not on the cytoplasmic face of the membrane. The anion channel has a significant permeability to cations, the sequence being NO 3 >Cl>K+>Aspartate (2.0410.18 to 0.090.04). The relative permeability for K+ decreased at progressively lower conductance states. In the absence of permeant anions this channel could be mistaken for a cation inward rectifier. The anion and cation channels could serve to clampV m at a preferred value in the face of events which would otherwise perturbV m .  相似文献   

12.
The mechanism by which animals detect weak electric and magnetic fields has not yet been elucidated. We propose that transduction of an electric field (E) occurs at the apical membrane of a specialized cell as a consequence of an interaction between the field and glycoproteins bound to the gates of ion channels. According to the model, a glycoprotein mass (M) could control the gates of ion channels, where M > 1.4 x 10(-18)/E, resulting in a signal of sufficient strength to overcome thermal noise. Using the electroreceptor organ of Kryptopterus as a mathematical and experimental model, we showed that at the frequency of maximum sensitivity (10 Hz), fields as low as 2 microV/m could be detected, and that the observation could be explained if a glycoprotein mass of 0.7 x 10(-12) kg (a sphere 11 microm in diameter) were bound to channel gates. Antibodies against apical membrane structures in Kryptopterus blocked field transduction, which was consistent with the proposal that it occurred at the membrane surface. Although the target of the field was hypothesized to be an ion channel, the proposed mechanism can easily be extended to include other kinds of membrane proteins.  相似文献   

13.
Annett Hertel  Ernst Steudle 《Planta》1997,202(3):324-335
Using the cell pressure probe, the effects of temperature on hydraulic conductivity (Lp; osmotic water permeability), solute permeability (permeability coefficient, Ps), and reflection coefficients (σs) were measured on internodes of Chara corallina, Klein ex Willd., em R.D.W.. For the first time, complete sets of transport coefficients were obtained in the range between 10 and 35 °C which provided evidence about pathways of water and solutes as they move across the plasma membrane (water channel and bilayer arrays). Test solutes used to check for the selectivity of water channels were monohydric alcohols of different molecular size and shape (ethanol, n-propanol, iso-propanol, and tert-butanol) and heavy water (HDO). Within the limits of accuracy, Q10 values for Lp and for the diffusive water permeability (Pd) were identical (Q10 for Lp = 1.29 ± 0.17 (± SD; n = 15 cells) and Q10 for Pd = 1.25 ± 0.16 (n = 5 cells)). The Q10 values were equivalent to activation energies of Ea = 16.8 ± 6.4 and 16.6 ± 10.0 kJ · mol−1, respectively, which is similar to that of self-diffusion or of viscous flow of water. The Q10 values and activation energies for Ps of the alcohols were significantly larger (ethanol: Q10 = 1.68 ± 0.16, Ea = 37.1 ± 5.9 kJ · mol−1; n-propanol: Q10 =  1.75 ± 0.40, Ea = 43.1 ± 15.3 kJ · mol−1; iso-propanol: Q10 = 2.12 ± 0.42, Ea =  52.2 ± 14.6 kJ · mol−1; tert-butanol: Q10 = 2.13 ± 0.56, Ea = 51.6 ± 17.1 kJ · mol−1; ±SD; n = 5 to 6 cells). Effects of temperature on reflection coefficients were most pronounced. With increasing temperature, σs values of the alcohols decreased and those of HDO increased. The data indicate that water and solutes use different pathways when crossing the membrane. Ordinary and isotopic water use water channels and the other test solutes use the bilayer array (composite transport model of membrane). Changes in σs values with temperature were found to be a sensitive measure for the open/closed state of water channels. The decrease of σs with temperature was theoretically predicted from the temperature dependence of Ps and Lp. Differences between predicted and measured values of σs allowed estimation of the bypass flow (slippage) of solutes through water channels which did not completely exclude test solutes. The permeability of channels depended on the structure and size of test solutes. It is concluded that water channels are much less selective than is usually thought. Since water channels represent single-file or no-pass pores, solutes drag along considerable amounts of water as they diffuse across channels. This results in low overall values of σs. The σs of HDO was extremely low. Its response to temperature was opposite to that for the σs of the alcohols. This suggested a stronger effect of temperature on the hydraulic (osmotic) than on the diffusive water flow across individual water channels, i.e. a differential sensitivity of different mechanisms to temperature. Received: 10 October 1996 / Accepted: 2 December 1996  相似文献   

14.
Small molecules offer unprecedented opportunities for plant research since plants respond to, metabolize, and react with a diverse range of endogenous and exogenous small molecules. Many of these small molecules become covalently attached to proteins. To display these small molecule targets in plants, we introduce a two-step labelling method for minitagged small molecules. Minitags are small chemical moieties (azide or alkyne) that are inert under biological conditions and have little influence on the membrane permeability and specificity of the small molecule. After labelling, proteomes are extracted under denaturing conditions and minitagged proteins are coupled to reporter tags through a 'click chemistry' reaction. We introduce this two-step labelling procedure in plants by studying the well-characterized targets of E-64, a small molecule cysteine protease inhibitor. In contrast to biotinylated E-64, minitagged E-64 efficiently labels vacuolar proteases in vivo . We displayed, purified and identified targets of a minitagged inhibitor that targets the proteasome and cysteine proteases in living plant cells. Chemical interference assays with inhibitors showed that MG132, a frequently used proteasome inhibitor, preferentially inhibits cysteine proteases in vivo . The two-step labelling procedure can be applied on detached leaves, cell cultures, seedlings and other living plant tissues and, when combined with photoreactive groups, can be used to identify targets of herbicides, phytohormones and reactive small molecules selected from chemical genetic screens.  相似文献   

15.
Peptide toxins of arthropods are one of the potential sources of bioactive substances. Toxins are able to bind to calcium channels and block them. Ca2+ ions play an important role in many cell processes, in particular, in apoptosis. In this work, we study the effect of some arthropod toxins on intracellular processes associated with the induction of apoptosis. Synthetic analogs of U5‐scytotoxin‐Sth1a, ω‐hexatoxin‐Hv1a, ω‐theraphotoxin‐Hhn2a, and μ‐agatoxin‐Aa1a toxins—inhibitors of calcium L, P, and Q channels and sodium channels were used in the study. Apoptosis was induced by AC‐1001 H3 peptide. We study the effect of toxins on the level of apoptosis, ROS, mitochondrial potential, GSH, and ATP in CHO‐K1 cells. We show that all the tested toxins are able to dose dependently block the induction of apoptosis triggered by AC‐1001 H3 and reduce the level of natural apoptosis in CHO‐K1 cells. Cell incubation with apoptosis inducer AC‐1001 H3 in the presence and absence of toxins causes an increase in the intracellular concentrations of ROS, ATP, and mitochondrial potential and decreases the GSH concentration. The present study reveals the antiapoptotic effect of a number of arthropod peptide toxins. The toxins studied can represent a novel approach used in the treatment of pathologies associated with the activation of apoptotic mechanisms.  相似文献   

16.
Mechanical transduction by membrane ion channels: a mini review   总被引:4,自引:0,他引:4  
There are ion channels in the cell membrane that are sensitive to stress in the membrane cytoskeleton. Some channels turn on with stress, others turn off. In specialized receptors such as those involved in hearing, touch, etc. the role of the channels is clear. However, virtually all cells have these channels, and we don't yet know the physiological role of the channels although it is reasonable to suppose that they are involved in the control of cell size, either acutely as in volume regulation, or trophically as in the control of cell division.  相似文献   

17.
Diffusion-weighted in vivo1H-NMR spectroscopy of F98 glioma cells embedded in basement membrane gel threads showed that the initial cell swelling to about 180% of the original volume induced under hypotonic stress was followed by a regulatory volume decrease to nearly 100% of the control volume in Dulbecco's modified Eagle's medium (DMEM) but only to 130% in Krebs-Henseleit buffer (KHB, containing only glucose as a substrate) after 7 h. The initial cell shrinkage to approx. 70% induced by the hypertonic stress was compensated by a regulatory volume increase which after 7 h reached almost 100% of the control value in KHB and 75% in DMEM.1H-,13C-and31P-NMR spectroscopy of perchloric acid extracts showed that these volume regulatory processes were accompanied by pronounced changes in the content of organic osmolytes. Adaptation of intra- to extracellular osmolarity was preferentially mediated by a decrease in the cytosolic taurine level under hypotonic stress and by an intracellular accumulation of amino acids under hypertonic stress. If these solutes were not available in sufficient quantities (as in KHB), the osmolarity of the cytosol was increasingly modified by biosynthesis of products and intermediates of essential metabolic pathways, such as alanine, glutamate and glycerophosphocholine in addition to ethanolamine. The cellular nucleoside triphosphate level measured by in vivo31P-NMR spectroscopy indicated that the energy state of the cells was more easily sustained under hypotonic than hypertonic conditions.To whom to address reprint requests.  相似文献   

18.
Ion channels are integral membrane proteins whose gating has been increasingly shown to depend on the presence of the low-abundance membrane phospholipid, phosphatidylinositol (4,5) bisphosphate. The expression and function of ion channels is tightly regulated via protein phosphorylation by specific kinases, including various PKC isoforms. Several channels have further been shown to be regulated by PKC through altered surface expression, probability of channel opening, shifts in voltage dependence of their activation, or changes in inactivation or desensitization. In this review, we survey the impact of phosphorylation of various ion channels by PKC isoforms and examine the dependence of phosphorylated ion channels on phosphatidylinositol (4,5) bisphosphate as a mechanistic endpoint to control channel gating.  相似文献   

19.
We used the chimeric Arabidopsis cyclic nucleotide-gated ion channel AtCNGC11/12 to conduct a structure-function study of plant cyclic nucleotide-gated ion channels (CNGCs). AtCNGC11/12 induces multiple pathogen resistance responses in the Arabidopsis mutant constitutive expresser of PR genes 22 (cpr22). A genetic screen for mutants that suppress cpr22-conferred phenotypes identified an intragenic mutant, #73, which has a glutamate to lysine substitution (E519K) at the beginning of the eighth beta-sheet of the cyclic nucleotide-binding domain in AtCNGC11/12. The #73 mutant is morphologically identical to wild-type plants and has lost cpr22-related phenotypes including spontaneous cell death and enhanced pathogen resistance. Heterologous expression analysis using a K(+)-uptake-deficient yeast mutant revealed that this Glu519 is important for AtCNGC11/12 channel function, proving that the occurrence of cpr22 phenotypes requires active channel function of AtCNGC11/12. Additionally, Glu519 was also found to be important for the function of the wild-type channel AtCNGC12. Computational structural modeling and in vitro cAMP-binding assays suggest that Glu519 is a key residue for the structural stability of AtCNGCs and contributes to the interaction of the cyclic nucleotide-binding domain and the C-linker domain, rather than the binding of cAMP. Furthermore, a mutation in the alpha-subunit of the human cone receptor CNGA3 that causes total color blindness aligned well to the position of Glu519 in AtCNGC11/12. This suggests that AtCNGC11/12 suppressors could be a useful tool for discovering important residues not only for plant CNGCs but also for CNGCs in general.  相似文献   

20.
Inactivation is a fundamental property of voltage-gated ion channels. Fast inactivation of Na(+) channels involves channel block by the III-IV cytoplasmic interdomain linker. The mechanisms of nonfast types of inactivation (intermediate, slow, and ultraslow) are unclear, although the ionic environment and P-loops rearrangement appear to be involved. In this study, we employed a TTX-based P-loop domain model of a sodium channel and the MCM method to investigate a possible role of P-loop rearrangement in the nonfast inactivation. Our modeling predicts that Na(+) ions can bind between neighboring domains in the outer-carboxylates ring EEDD, forming an ordered structure with interdomain contacts that stabilize the conducting conformation of the outer pore. In this model, the permeant ions can transit between the EEDD ring and the selectivity filter ring DEKA, retaining contacts with at least two carboxylates. In the absence of Na(+), the electrostatic repulsion between the EEDD carboxylates disrupts the permeable configuration. In this Na(+)-deficient model, the region between the EEDD and DEKA rings is inaccessible for Na(+) but is accessible for TMA. Taken together, these results suggest that Na(+)-saturated models are consistent with experimental characteristics of the open channels, whereas Na(+)-deficient models are consistent with experimentally defined properties of the slow-inactivated channels. Our calculations further predict that binding of LAs to the inner pore would depend on whether Na(+) occupies the DEKA ring. In the absence of Na(+) in the DEKA ring, the cationic group of lidocaine occurs in the focus of the pore helices' macrodipoles and would prevent occupation of the ring by Na(+). Loading the DEKA ring with Na(+) results in the electrostatic repulsion with lidocaine. Thus, there are antagonistic relations between a cationic ligand bound in the inner pore and Na(+) in the DEKA ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号