首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural details on mdm2-p53 interaction   总被引:1,自引:0,他引:1  
Mdm2 is a cellular antagonist of p53 that keeps a balanced cellular level of p53. The two proteins are linked by a negative regulatory feedback loop and physically bind to each other via a putative helix formed by residues 18-26 of p53 transactivation domain (TAD) and its binding pocket located within the N-terminal 100-residue domain of mdm2 (Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., and Pavletich, N. P. (1996) Science 274, 948-953). In a previous report we demonstrated that p53 TAD in the mdm2-freee state is mostly unstructured but contains two nascent turns in addition to a "preformed" helix that is the same as the putative helix mediating p53-mdm2 binding. Here, using heteronuclear multidimensional NMR methods, we show that the two nascent turn motifs in p53 TAD, turn I (residues 40-45) and turn II (residues 49-54), are also capable of binding to mdm2. In particular, the turn II motif has a higher mdm2 binding affinity ( approximately 20 mum) than the turn I and targets the same site in mdm2 as the helix. Upon mdm2 binding this motif becomes a well defined full helix turn whose hydrophobic face formed by the side chains of Ile-50, Trp-53, and Phe-54 inserts deeply into the helix binding pocket. Our results suggest that p53-mdm2 binding is subtler than previously thought and involves global contacts such as multiple "non-contiguous" minimally structured motifs instead of being localized to one small helix mini-domain in p53 TAD.  相似文献   

2.
3.
Cell type-specific inhibition of p53-mediated apoptosis by mdm2.   总被引:23,自引:5,他引:18       下载免费PDF全文
Y Haupt  Y Barak    M Oren 《The EMBO journal》1996,15(7):1596-1606
  相似文献   

4.
5.
6.
7.
Lai JC  Cheng YW  Goan YG  Chang JT  Wu TC  Chen CY  Lee H 《DNA Repair》2008,7(8):1352-1363
Methylation of the O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter is associated with G:C to A:T transitions in the p53 gene in various human cancers, including lung cancer. In tumors with p53 mutation, MGMT promoter methylation is more common in advanced tumors than in early tumors. However, in tumors with wild-type p53, MGMT promoter methylation is independent of tumor stage. To elucidate whether p53 participates in MGMT promoter methylation, we engineered three cell models: A549 cells with RNA interference (RNAi)-mediated knockdown of p53, and p53 null H1299 cells transfected with either wild-type p53 (WT-p53) or mutant-p53 (L194R, and R249S-p53). Knockdown of endogenous p53 increased MGMT promoter methylation in A549 cells, and transient expression of WT-p53 in p53 null H1299 cells diminished MGMT promoter methylation, whereas the MGMT promoter methylation status were unchanged by expression of mutant-p53. Previous work showed that p53 modulates DNA-methyltransferase 1 (DNMT1) expression; we additionally examined chromatin remodeling proteins expression levels of histone deacetylase 1 (HDAC1). We found that p53 knockdown elevated expression of both DNMT1 and HDAC1 in A549 cells. Conversely, expressing WT-p53 in p53 null H1299 cells reduced DNMT1 and HDAC1 expression, but the reduction of both proteins was not observed in expressing mutant-p53 H1299 cells. CHIP analysis further showed that DNMT1 and HDAC1 binding to the MGMT promoter was increased by MGMT promoter methylation and decreased by MGMT promoter demethylation. In conclusion, MGMT promoter methylation modulated by p53 status could partially promote p53 mutation occurrence in advanced lung tumors.  相似文献   

8.
9.
Reactivation of mutant p53 in tumours is a promising strategy for cancer therapy. Here we characterise the novel p53 rescue compound P53R3 that restores sequence-specific DNA binding of the endogenously expressed p53(R175H) and p53(R273H) mutants in gel-shift assays. Overexpression of the paradigmatic p53 mutants p53(R175H), p53(R248W) and p53(R273H) in the p53 null glioma cell line LN-308 reveals that P53R3 induces p53-dependent antiproliferative effects with much higher specificity and over a wider range of concentrations than the previously described p53 rescue drug p53 reactivation and induction of massive apoptosis (PRIMA-1). Furthermore, P53R3 enhances recruitment of endogenous p53 to several target promoters in glioma cells bearing mutant (T98G) and wild-type (LNT-229) p53 and induces mRNA expression of numerous p53 target genes in a p53-dependent manner. Interestingly, P53R3 strongly enhances the mRNA, total protein and cell surface expression of the death receptor death receptor 5 (DR5) whereas CD95 and TNF receptor 1 levels are unaffected. Accordingly, P53R3 does not sensitise for CD95 ligand- or tumour necrosis factor alpha-induced cell death, but displays synergy with Apo2L.0 in 9 of 12 glioma cell lines. Both DR5 surface induction and synergy with Apo2L.0 are sensitive to siRNA-mediated downregulation of p53. Thus this new p53 rescue compound may open up novel perspectives for the treatment of cancers currently considered resistant to the therapeutic induction of apoptosis.  相似文献   

10.
Signaling mediated by activation of the transmembrane receptor Notch influences cell-fate decisions, differentiation, proliferation, and cell survival. Activated Notch reduces proliferation by altering cell-cycle kinetics and promotes differentiation in hematopoietic progenitor cells. Here, we investigated if the G(1) arrest and differentiation induced by activated mNotch1 are dependent on tumor suppressor p53, a critical mediator of cellular growth arrest. Multipotent wild-type p53-expressing (p53(wt)) and p53-deficient (p53(null)) hematopoietic progenitor cell lines (FDCP-mix) carrying an inducible mNotch1 system were used to investigate the effects of proliferation and differentiation upon mNotch1 signaling. While activated Notch reduced proliferation of p53(wt)-cells, no change was observed in p53(null)-cells. Activated Notch upregulated the p53 target p21(cip/waf) in p53(wt)-cells, but not in p53(null)-cells. Induction of the p21(cip/waf) gene by activated Notch was mediated by increased binding of p53 to p53-binding sites in the p21(cip/waf) promoter and was independent of the canonical RBP-J binding site. Re-expression of p53(wt) in p53(null) cells restored the inhibition of proliferation by activated Notch. Thus, activated Notch inhibits proliferation of multipotent hematopoietic progenitor cells via a p53-dependent pathway. In contrast, myeloid and erythroid differentiation was similarly induced in p53(wt) and p53(null) cells. These data suggest that Notch signaling triggers two distinct pathways, a p53-dependent one leading to a block in proliferation and a p53-independent one promoting differentiation.  相似文献   

11.
The mdm2 (murine double minute 2) oncogene encodes several proteins, the largest of which (p90) binds to and inactivates the p53 tumor suppressor protein. Multiple MDM2 proteins have been detected in tumors and in cell lines expressing high levels of mdm2 mRNAs. Here we show that one of these proteins (p76) is expressed, along with p90, in wild-type and p53-null mouse embryo fibroblasts, indicating that it may have an important physiological role in normal cells. Expression of this protein is induced, as is that of p90, by UV light in a p53-dependent manner. The p76 protein is synthesized via translational initiation at AUG codon 50 and thus lacks the N terminus of p90 and does not bind p53. In cells, p90 and p76 can be synthesized from mdm2 mRNAs transcribed from both the P1 (constitutive) and P2 (p53-responsive) promoters. Site-directed mutagenesis reveals that these RNAs give rise to p76 via internal initiation of translation. In addition, mdm2 mRNAs lacking exon 3 give rise to p76 exclusively, and such mRNAs are induced by p53 in response to UV light. These data indicate that p76 may be an important product of the mdm2 gene and a downstream effector of p53.  相似文献   

12.
Mdm2 is a cellular oncoprotein the most obvious function of which is the down-regulation of the growth suppressor protein p53. It represents a highly phosphorylated protein but only little is yet known about the sites phosphorylated in vivo, the kinases that are responsible for the phosphorylation or the functional relevance of the phosphorylation status. Recently, we have shown that mdm2 is a good substrate for protein kinase CK2 at least in vitro. Computer analysis of the primary amino acid sequence of mdm2 revealed 19 putative CK2 phosphorylation sites. By using deletion mutants of mdm2 and a peptide library we identified the serine residue at position 269 which lies within a canonical CK2 consensus sequence (EGQELSDEDDE) as the most important CK2 phosphorylation site. Moreover, by using the mdm2 S269A mutant for in vitro phosphorylation assays this site was shown to be phosphorylated by CK2. Binding studies revealed that phosphorylation of mdm2 at S269 does not have any influence on the binding of p53 to mdm2.  相似文献   

13.
Mutant p53 proteins not only lose their tumor-suppressor function but some acquire oncogenic gain of function (GOF). The published mutp53 knock-in (KI) alleles (R172H, R270H, R248W) manifest GOF by broader tumor spectrum and more metastasis compared with the p53-null allele, but do not shorten survival. However, whether GOF also occurs with other mutations and whether they are all biologically equal is unknown. To answer this, we created novel humanized mutp53 KI mice harboring the hot spot alleles R248Q and G245S. Intriguingly, their impact was very different. Compared with p53-null mice, R248Q/− mice had accelerated onset of all tumor types and shorter survival, thus unprecedented strong GOF. In contrast, G245S/− mice were similar to null mice in tumor latency and survival. This was associated with a twofold higher T-lymphoma proliferation in R248Q/− mice compared with G245S/− and null mice. Moreover, R248Q/− hematopoietic and mesenchymal stem cells were expanded relative to G245S/− and null mice, the first indication that GOF also acts by perturbing pretumorous progenitor pools. Importantly, these models closely mirror Li–Fraumeni patients who show higher tumor numbers, accelerated onset and shorter tumor-free survival by 10.5 years when harboring codon R248Q mutations as compared with Li–Fraumeni patients with codon G245S mutations or p53 deletions/loss. Conversely, both KI alleles caused a modest broadening of tumor spectrum with enhanced Akt signaling compared with null mice. These models are the first in vivo proof for differential oncogenic strength among p53 GOF alleles, with genotype–phenotype correlations borne out in humans.  相似文献   

14.
Stephanie Fanucchi 《FEBS letters》2009,583(22):3557-3562
A novel survival role of focal adhesion kinase (FAK) that involves its nuclear translocation and direct association with p53 has been demonstrated. Here we examined the relationship between the p53/FAK interaction and Ser46 phosphorylation of p53 (p-p53Ser46) in the apoptotic regulation of human esophageal squamous cell carcinoma (HOSCC) cell lines, expressing either wild type (wt) p53 or mutant (mt) p53-R175H. In contrast to the wt p53 cell lines, the mt p53-R175H cell line was resistant to staurosporine (STS)-mediated detachment and caspase-3 activation. Furthermore, despite the resistance of mt p53-R175H to Ser46 phosphorylation, both wt and mt HOSCC cells translocate FAK into the nucleus and maintain the p53/FAK interaction post STS treatment. These findings provide unique insight into how tumor cells harboring the R175H mutant may resist chemotherapeutic intervention.

Structured summary

MINT-7294020: FAK (uniprotkb:Q05397) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti-bait coimmunoprecipitation (MI:0006)  相似文献   

15.
16.
17.
Nutlin-3 selectively activates p53 by inhibiting the interaction of this tumor suppressor with its negative regulator murine double minute 2 (mdm2), while trichostatin A (TSA) is one of the most potent histone deacetylase (HDAC) inhibitors currently available. As both Nutlin-3 and TSA increase the levels of the cell cycle inhibitor p21(cip1/waf1) in cells, we investigated whether a combination of these compounds would further augment p21 levels. Contrary to expectations, we found that short-term exposure to Nutlin-3 and TSA in combination did not have an additive effect on p21 expression. Instead, we observed that activation of p53 prevented the ability of TSA to increase p21 levels. Furthermore, TSA inhibited Nutlin-3-induced expression of p53-dependent mRNAs including P21. This negative effect of TSA on Nutlin-3 was significantly less pronounced in the case of hdm2, another p53 downstream target. Aside from suggesting a model to explain these incompatible effects of Nutlin-3 and TSA, we discuss the implications of our findings in cancer therapy and cell reprogramming.  相似文献   

18.
mdm2 and mdmx oncogenes play essential yet non-redundant roles in synergistic inactivation of the tumor suppressor, p53. While Mdm2 inhibits p53 activity mainly by augmenting its ubiquitination, the functional role of Mdmx on p53 ubiquitination remains obscure. In transfected H1299 cells, Mdmx augmented Mdm2-mediated ubiquitination of p53. In in vitro ubiquitination assays, the Mdmx/Mdm2 heteromeric complex, in comparison to the Mdm2 homomer, showed enhanced ubiquitinase activity toward p53 and the reduced auto-ubiquitination of Mdm2. Alteration of the substrate specificity via binding to Mdmx may contribute to efficient ubiquitination and inactivation of p53 by Mdm2.

Structured summary

MINT-7219995: P53 (uniprotkb:P04637) physically interacts (MI:0914) with Ubiquitin (uniprotkb:P62988) by anti bait coimmunoprecipitation (MI:0006)MINT-7220023: Ubiquitin (uniprotkb:P62988) physically interacts (MI:0914) with P53 (uniprotkb:P04637) by pull down (MI:0096)  相似文献   

19.
We have solved the crystal structures of three oncogenic mutants of the core domain of the human tumor suppressor p53. The mutations were introduced into a stabilized variant. The cancer hot spot mutation R273H simply removes an arginine involved in DNA binding without causing structural distortions in neighboring residues. In contrast, the "structural" oncogenic mutations H168R and R249S induce substantial structural perturbation around the mutation site in the L2 and L3 loops, respectively. H168R is a specific intragenic suppressor mutation for R249S. When both cancer mutations are combined in the same molecule, Arg(168) mimics the role of Arg(249) in wild type, and the wild type conformation is largely restored in both loops. Our structural and biophysical data provide compelling evidence for the mechanism of rescue of mutant p53 by intragenic suppressor mutations and reveal features by which proteins can adapt to deleterious mutations.  相似文献   

20.
D R Brown  C A Thomas    S P Deb 《The EMBO journal》1998,17(9):2513-2525
The human oncoprotein MDM2 (hMDM2) overexpresses in various human tumors. If amplified, the mdm2 gene can enhance the tumorigenic potential of murine cells. Here, we present evidence to show that the full-length human or mouse MDM2 expressed from their respective cDNA can inhibit the G0/G1-S phase transition of NIH 3T3 and normal human diploid cells. The protein harbors more than one cell-cycle-inhibitory domain that does not overlap with the p53-interaction domain. Deletion mutants of hMDM2 that lack the cell-cycle-inhibitory domains can be stably expressed in NIH 3T3 cells, enhancing their tumorigenic potential. The tumorigenic domain of hMDM2 overlaps with the p53-interaction domain. Some tumor-derived cells, such as Saos-2, H1299 or U-2OS, are relatively insensitive to the growth-inhibitory effects of hMDM2. These observations suggest that hMDM2 overexpression in response to oncogenic stimuli would induce growth arrest in normal cells. Elimination or inactivation of the hMDM2-induced G0/G1 arrest may contribute to one of the steps of tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号