共查询到20条相似文献,搜索用时 0 毫秒
1.
Lactate dehydrogenase (LDH, EC 1.1.1.27) catalyses the reduction of pyruvate to lactate in facultative anaerobes. Whole cells of Lactobacillus plantarum NCIM 2084 showed low levels of LDH activity but permeabilization of cells by treatment with organic solvents toluene, chloroform and diethyl ether increased the measurable LDH activities, ether treated cells showing the highest increase. The maximum intracellular activity was obtained upon treating the cells with ether (1%) at 28°C for 1 min. The LDH activity in permeabilized cells was nearly three-fold higher than that in the cell-free extract prepared by sonication. The kinetic properties of LDH in the permeabilized cells were comparable to that of cell-free extract, indicating that catalytically it functions similar to the isolated enzyme. 相似文献
2.
Abstract A range of microorganisms was screened for new and high producer strains of trehalose phosphorylase (EC 2.4.1.64). Trehalose phosphorylase activity was found in cells of actinomycetes of the genera Actinomadura, Amycolata, Catellatospora, Kineosporia , and Nocardia . Among them, Catellatospora ferruginea showed the highest enzyme activity. Trehalose phosphorylase from C. ferruginea was able to catalyse both the phosphorolysis of trehalose into β-glucose 1-phosphate and d-glucose and the synthesis of trehalose from β-glucose 1-phosphate and d-glucose. 相似文献
3.
A simple, rapid and reliable procedure for permeabilizing cyanobacterial cells and measuring the glycogen synthetic pathway in situ, is presented. Cells from Anabaena sp. strain PCC 7120 were permeabilized with a mixture of toluene:ethanol (1:4 v/v). Fluorescence microscopy of cells incubated with fluorescein diacetate showed Anabaena non-permeabilized cells as green fluorescents, whereas permeabilized (viable) cells exhibited the intrinsic red fluorescence. Labelled alpha-1,4-glucan was recovered when permeabilized cells were incubated with the substrates of ADP-glucose pyrophosphorylase or glycogen synthase. The kinetic and regulatory properties of both enzymes could be reproduced in situ. The simplicity of the procedure and the ability to measure in situ glucan fluxes show the methodology as useful for studying the intracellular regulation of storage polysaccharides in a photosynthetic prokaryote. 相似文献
4.
Régine Talon Marie-Christine Montel Jean-Louis Berdague 《Enzyme and microbial technology》1996,19(8):620-622
The present paper describes the potential of Staphylococcus warneri and Staphylococcus xylosus lipases in the production of a variety of flavor esters. Both immobilized lipases produced ethyl esters from hexanoic to oleic acids with an optimum at decanoic acid. They esterified aliphatic and branched chain primary alcohols from ethanol to hexanol. Under our standard conditions, acetic, butyric, 2-methyl butyric, 3-methyl butyric, and valeric acids underwent slight esterification. 相似文献
5.
Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood 总被引:1,自引:0,他引:1
Rodrigues JP Paraguassú-Braga FH Carvalho L Abdelhay E Bouzas LF Porto LC 《Cryobiology》2008,56(2):144-151
Bone marrow transplantation (BMT) is a therapeutic procedure that involves transplantation of hematopoietic stem cells (HSC). To date, there are three sources of HSC for clinical use: bone marrow; mobilized peripheral blood; and umbilical cord blood (UCB). Depending on the stem cell source or type of transplantation, these cells are cryopreserved. The most widely used cryoprotectant is dimethylsulfoxide (Me2SO) 10% (v/v), but infusion of Me2SO-cryopreserved cells is frequently associated with serious side effects in patients. In this study, we assessed the use of trehalose and sucrose for cryopreservation of UCB cells in combination with reduced amounts of Me2SO. The post-thawed cells were counted and tested for viability with Trypan blue, the proportion of HSC was determined by flow cytometry, and the proportion of hematopoeitic progenitor cells was measured by a colony-forming unit (CFU) assay. A solution of 30 mmol/L trehalose with 2.5% Me2SO (v/v) or 60 mmol/L sucrose with 5% Me2SO (v/v) produced results similar to those for 10% (v/v) Me2SO in terms of the clonogenic potential of progenitor cells, cell viability, and numbers of CD45+/34+ cells in post-thawed cord blood cryopreserved for a minimum of 2 weeks. Thus, cord blood, as other HSC, can be cryopreserved with 1/4 the standard Me2SO concentration with the addition of disaccharides. The use of Me2SO at low concentrations in the cryopreservation solution may improve the safety of hematopoietic cell transplantation by reducing the side effects on the patient. 相似文献
6.
T. Y. Bogracheva P. Cairns T. R. Noel S. Hulleman T. L. Wang V. J. Morris S. G. Ring C. L. Hedley 《Carbohydrate polymers》1999,39(4):303-314
The granular structure and gelatinisation properties of starches from a range of pea seed mutants were studied. Genes which affect the supply of substrate during starch synthesis (rb, rug3, rug4) affected the total crystallinity and possibly increased the content of A polymorphs in the starch. Conversely, genes directly affecting the synthesis of starch polymers (r, rug5, lam) increased the content of B polymorphs, but had a minimal effect on total crystallinity. During gelatinisation, starches from the rb, rug3, rug4 and lam mutants had narrow endothermic peaks which were similar to starch from the wild-type, although all the starches had different peak temperatures and enthalpy changes. Starches from r and rug5 mutants were very different to all other starches, having a very wide transition during gelatinisation. In addition, the amylopectin in starch from these mutants had altered chain lengths for those parts of the polymer which form the ordered structures in the granule. 相似文献
7.
Sashiwa H Fujishima S Yamano N Kawasaki N Nakayama A Muraki E Hiraga K Oda K Aiba S 《Carbohydrate research》2002,337(8):761-763
The selective and efficient production of N-acetyl-D-glucosamine (GlcNAc) was achieved from flake type of alpha-chitin by using crude enzymes derived from Aeromonas hydrophila H-2330. 相似文献
8.
It has been claimed (Andreu, J.M., Warth, R. and Muñoz, E. (1978) FEBS Lett. 86, 1–5) that the F1-ATPase of Micrococcus lysodeikticus is a glycoprotein containing mannose and glucose as the principal sugars. Even after extensive purification of M. lysodeikticus F1-ATPase by DEAE-Sephadex A25 chromatography, carbohydrate contents varying from 2.7 to 10.8% have been found. Concanavalin A-reactive components corresponding to the succinylated lipomannan have been detected and separated from the ATPase in purified F1 preparations by immunoelectrophoresis (rocket and two-dimensional) through agarose gels containing concanavalin A. Passage of the purified F1-ATPase through concanavalin A-Sepharose 4B columns removed the carbohydrate component(s) without loss of the specific activity of the ATPase. Mannose was the only sugar detectable by gas-liquid chromatography of the F1-ATPase before Con A-Sepharose 4B chromatography and it was completely eliminated after chromatography. No qualitative or quantitative changes in the subunit (, β, γ, δ and ε) profiles were detectable when the sodium dodecyl sulfate polyacrylamide gels were scanned by densitometry of F1-ATPase before and after Con A-Sepharose 4B chromatography. We conclude that there is no evidence of carbohydrate covalently linked to this F1-ATPase and that this membrane protein is not a glycoprotein. The presence of carbohydrate is attributable to contamination with lipomannan. 相似文献
9.
Tsuei-Yun Fang Wen-Chi Tseng Ching-Ju Yu Tong-Yuan Shih 《Journal of Molecular Catalysis .B, Enzymatic》2005,33(3-6):99-107
Isoamylase catalyzes the hydrolysis of -1,6-glucosidic linkages of starch and related polysaccharides. In this study, the treX gene (GenBank accession no. AE006815 REGION: 9279 … 11435) encoding the thermophilic isoamylase was PCR-cloned from the genomic DNA of Sulfolobus solfataricus ATCC 35092 to an expression vector with a T7lac promoter. Both wild-type and His-tagged isoamylases were expressed in Escherichia coli. The wild-type isoamylase was purified sequentially using heat treatment, nucleic acid precipitation, ion-exchange chromatography, and gel filtration chromatography while the His-tagged isoamylase was purified from the cell-free extract directly by metal chelating chromatography. Both enzymes were active only under their homo-trimer forms. In the absence of NaCl, both enzymes became inactive monomers. In addition, both enzymes were more stable when being stored at room temperature than at 4 °C. They had an apparent optimal pH of 5 and an optimal temperature at 75 °C. The enzyme activities remained unchanged after a 2 h incubation at 80 and 75 °C for the wild-type and His-tagged enzymes, respectively. These thermophilic isoamylases showed a potential to be used in industry to degrade the branching points of starch at a high temperature. 相似文献
10.
Freezing tolerance is an important characteristic for baker’s yeast, Saccharomyces cerevisiae, as it is used to make frozen dough. The ability of yeast cells to survive freezing is thought to depend on various factors. The purpose of this work was to study the viability of yeast cells during the freezing process. We examined factors potentially affecting their survival, including the growth phase, ice-seeding temperature, intracellular trehalose content, freezing period, and duration of supercooling. The results showed that the ice-seeding temperature significantly affected cell viability. In the stationary phase, trehalose accumulation did not affect the viability of yeast cells after brief freezing, although it did significantly affect the viability after prolonged freezing. In the log phase, the ice-seeding temperature was more important for cell survival than the presence of trehalose during prolonged freezing. The importance of increasing the extracellular ice-seeding temperature was verified by comparing frozen yeast survival rates in a freezing test with ice-seeding temperatures of −5 °C and −15 °C. We also found that the cell survival rates began to increase at 3 h of supercooling. The yeast cells may adapt to subzero temperatures and/or acquire tolerance to freezing stress during the supercooling. 相似文献
11.
12.
Hye-Min Kim You-Kyung Chang Soo-In Ryu Sung-Gweon Moon Soo-Bok Lee 《Journal of Molecular Catalysis .B, Enzymatic》2007,49(1-4):98-103
Pyrococcus horikoshii trehalose-synthesizing glycosyltransferase employed a galactose as an acceptor in the glucosyl transfer reaction with an NDP-Glc donor. The reaction produced a non-reducing transfer product in a yield of more than 30% based on the molar concentration of donor used. The transfer product was purified by paper chromatography and preparative HPLC, and its glycosidic structure was confirmed by 13C nuclear magnetic resonance to be -d-glucopyranosyl -d-galactopyranoside. Interestingly, this trehalose analogue disaccharide inhibited the action of several disaccharidases, including a trehalase. The analogue competitively inhibited porcine kidney and rat intestinal trehalases with Ki values of 0.68 and 3.7 mM, respectively. It also competitively inhibited other intestinal disaccharidases such as sucrase, maltase, and isomaltase with respective Ki values of approximately 0.66, 3.0, and 2.1 mM. Accordingly, this trehalose analogue would be a potentially indigestible disaccharide, effectively inhibiting intestinal brush border disaccharidases. 相似文献
13.
Lorena Latorre-García Ana Cristina Adam Julio Polaina 《World journal of microbiology & biotechnology》2008,24(12):2957-2963
Production of glucoamylase encoded by the Saccharomyces cerevisiae (var. diastaticus) STA1 gene has been assayed in laboratory S. cerevisiae strains of different ploidy and in different industrial Saccharomyces strains, in which STA1 was expressed under control of an inducible promoter. Highest enzyme activity was achieved with a tetraploid strain constructed by crossing preselected parental strains. Maximal glucoamylase production correlated with heterogeneity in enzyme mass, likely due to incomplete glycosylation, suggesting that the secretion-glycosylation process is the limiting step in the production of the STA-encoded glucoamylase by Saccharomyces. Industrial strains showed quite different capacity to produce glucoamylase. High production was achieved with a S. pastorianus brewer’s strain. Overall, our results allowed the selection of strains capable of yielding a high level of glucoamylase and suggest specific approaches for further enhancing this capability. 相似文献
14.
Vojtch Vejvoda Ondej Kaplan Karel Bezouka Petr Pompach Miroslav ulc Maria Cantarella Oldich Benada Bronislava Uhnkov Anna Ringelov Sabine Lutz-Wahl Lutz Fischer Vladimír Ken Ludmila Martínkov 《Journal of Molecular Catalysis .B, Enzymatic》2008,50(2-4):99-106
An intracellular nitrilase was purified from a Fusarium solani O1 culture, in which the enzyme (up to 3000 U L−1) was induced by 2-cyanopyridine. SDS-PAGE revealed one major band corresponding to a molecular weight of approximately 40 kDa. Peptide mass fingerprinting suggested a high similarity of the protein with the putative nitrilase from Gibberella moniliformis. Electron microscopy revealed that the enzyme molecules associated into extended rods. The enzyme showed high specific activities towards benzonitrile (156 U mg−1) and 4-cyanopyridine (203 U mg−1). Other aromatic nitriles (3-chlorobenzonitrile, 3-hydroxybenzonitrile) also served as good substrates for the enzyme. The rates of hydrolysis of aliphatic nitriles (methacrylonitrile, propionitrile, butyronitrile, valeronitrile) were 14–26% of that of benzonitrile. The nitrilase was active within pH 5–10 and at up to 50 °C with optima at pH 8.0 and 40–45 °C. Its activity was strongly inhibited by Hg2+ and Ag+ ions. More than half of the enzyme activity was preserved at up to 50% of n-hexane or n-heptane or at up to 15% of xylene or ethanol. Operational stability of the enzyme was examined by the conversion of 45 mM 4-cyanopyridine in a continuous and stirred ultrafiltration-membrane reactor. The nitrilase half-life was 277 and 10.5 h at 35 and 45 °C, respectively. 相似文献
15.
Aliabbas A. Saleh Uma S. GuneRajeev Kumar Chaudhary Ankit P. TurakhiyaIpsita Roy 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
Inhibition of huntingtin aggregation, either in the nucleus and/or in the cytosol, has been identified as a major strategy to ameliorate the symptoms of Huntington's disease. Chaperones and other protein stabilisers would thus be key players in ensuring the correct folding of the amyloidogenic protein and its expression in the soluble form. By transient activation of the global heat stress response in Saccharomyces cerevisiaeBY4742, we show that heterologous expression of mutant huntingtin (103Q-htt) could be modulated so that the protein was partitioned off in the soluble fraction of the cytosol. This led to lower levels of reactive oxygen species and improved cell viability. Previous reports had speculated on the relationship between trehalose and the heat shock response in ensuring enhanced cell survival but no direct evidence of such an interaction was available. Using mutants of an isogenic strain which do not express the major trehalose synthetic or metabolising enzymes or the chaperone, heat shock protein 104 (Hsp104), we were able to identify the functions of Hsp104 and the osmoprotectant trehalose in solubilising mutant huntingtin. We propose that the beneficial effect of the protein refolding machinery in solubilising the aggregation-prone protein is exerted by maintaining a tight balance between the trehalose synthetic enzyme, trehalose-6-phosphate synthase 1 and Hsp104. This ensures that the level of the osmoprotectant, trehalose, does not exceed the limit beyond which it is reported to inhibit protein refolding. 相似文献
16.
E. Ben Messaoud M. Ben Ali N. Elleuch N. Fourati Masmoudi S. Bejar 《Enzyme and microbial technology》2004,34(7):84-666
A new bacterial strain, identified as Bacillus subtilis US116, was isolated from Tunisian soil and selected for its potential production of an atypical amylase with an industrial interest. The identification was founded on physiological tests and molecular techniques related to the 16S rRNA, 23S rRNA genes and intergenic sequences showing the highest similarity of 98% with regions in the complete genome of Bacillus subtilis 168 (accession no. Z99104). This strain produces an atypical amylase that was purified to homogeneity by a combination of acetone precipitation, size exclusion and ion exchange chromatography. The molecular mass of the enzyme is about 60 kDa as determined by SDS–PAGE. Optimal conditions for the activity of the purified enzyme are pH 6 and 65 °C. The half-life duration is about 3 h at 70 °C and 5 h at 65 °C. This enzyme belongs to the endo-type amylases according to the hydrolytic mode study using Ceralpha and Betamyl methods. It is classified as a maltoheptaose- and maltohexaose-forming amylase since it generates about 30% maltohexaose (DP6) and 20% maltoheptaose (DP7) from starch. Moreover, the minimum length of maltosaccharide cleaved by this enzyme was maltoheptaose. 相似文献
17.
Amanda J. Meikle John A. Chudek Robert H. Reed Geoffrey M. Gadd 《FEMS microbiology letters》1991,82(2):163-168
Abstract: Analysis of seventeen yeast strains by 13 C-NMR spectroscopy has confirmed the significance of glycerol as the sole osmoregulatory solute under salt-stressed conditions, and has shown arabitol to be present in most of the osmotolerant species. Ribitol was detected in some species, including Debaryomyces hansenii , although ribitol accumulation did not correlate with the osmotic pressure of the medium. Relative amounts of arabitol and ribitol decreased in relation to glycerol when the external osmotic pressure was increased. Trehalose was present during exponential growth of some species. 相似文献
18.
Eun Yeol Lee Seung-Shick Yoo Hee Sook Kim Soo Jung Lee You-Kwan Oh Sunghoon Park 《Enzyme and microbial technology》2004,35(6-7):624-631
A recombinant yeast Pichia pastoris carrying the gene encoding epoxide hydrolase (EH) of Rhodotorula glutinis was constructed and used for producing (S)-styrene oxide by enantioselective hydrolysis of racemic mixtures of styrene oxides. The EH gene was obtained by PCR amplification of cDNA of R. glutinis and integrated into the chromosomal DNA of P. pastoris to express EH under the control of AOX promoter. The recombinant yeast has a high hydrolytic activity toward (R)-styrene oxide as 358 nmol min−1 (mg cell)−1, which is about 10-fold higher than that of wild type R. glutinis. When kinetic resolution was conducted by the recombinant yeast at a high initial epoxides concentration of 526 mM that constitutes an epoxide–water two-liquid phase, chiral (S)-styrene oxide with an enantiomeric excess (e.e.) higher than 98% was obtained as 36% yield (theoretical, 50%) at 16 h. 相似文献
19.
V. Niggli D. E. Knight P. F. Baker A. Vigny† J.-P. Henry† 《Journal of neurochemistry》1984,43(3):646-658
Abstract: The systems responsible for phosphorylating tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosynthesis, were investigated in situ in adrenal medullary cells made permeable to solutes of up to 1,000 dalton by exposure to brief intense electric fields. Two different phosphorylation systems were found. One is dependent on Ca2+ , the other on cyclic AMP. The Ca2+ -dependent system is half-maximally activated by 1-2 μ M Ca2+ and 0.5 m M ATP, and follows a time course similar to that of secretion of catecholamines. Trifluoperazine (0.1 m M ) does not inhibit significantly Ca2+ -dependent phosphorylation of tyrosine hydroxylase in situ. The cyclic AMP-dependent system is half-maximally activated by addition of 0.5 μ M cyclic AMP and about 0.3 m M ATP. Ca2+ -dependent and cyclic AMP-dependent phosphorylations of tyrosine hydroxylase have roughly the same time course and are additive under conditions where one system is already saturated. Peptide maps of immunoprecipitated tyrosine hydroxylase, after in situ phosphorylation of the enzyme either in the presence of 10−8 M Ca2+ plus 2 × 10−5 M cyclic AMP or of 10−5 M Ca2+ , show a marked difference indicating that the enzyme contains several phosphorylation sites. At least one of these sites is phosphorylated only by the Ca2+ -dependent system, whereas the other site(s) are phosphorylated by both the Ca2+ - and cyclic AMP-dependent systems. The effect of in situ phosphorylation of tyrosine hydroxylase on its enzymatic activity was also investigated. 相似文献
20.
The enzymatic hydrolyses of laser pretreated corn stover as a novel pretreatment method were examined to establish a simplified kinetic model for the complicated hydrolysis process. The time dependence of the total reducing sugars amount was closely related to the amounts of cellulosic materials and amounts of cellulase. The evaluated model fitted very well with the experimental data of enzymatic hydrolysis of laser pretreated corn stover under different conditions, including cellulase loading, nature of substrate, substrate loading in the reaction medium. The results indicated that the complex kinetics of cellulase enzymatic saccharification could be assessed with the fractal kinetic model. The cellulase enzymatic reaction process was effectively predicted and controlled with the kinetic model. The result showed that the model could effectively reflect dynamic process of enzyme hydrolysis. 相似文献