首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical modification of amino acid residues with phenylglyoxal, N-ethylmaleimide and diethyl pyrocarbonate indicated that at least one residue each of arginine, cysteine and histidine were essential for the activity of sheep liver serine hydroxymethyltransferase. The second-order rate constants for inactivation were calculated to be 0.016 mM-1 X min-1 for phenylglyoxal, 0.52 mM-1 X min-1 for N-ethylmaleimide and 0.06 mM-1 X min-1 for diethyl pyrocarbonate. Different rates of modification of these residues in the presence and in the absence of substrates and the cofactor pyridoxal 5'-phosphate as well as the spectra of the modified protein suggested that these residues might occur at the active site of the enzyme.  相似文献   

2.
Equilibrium unfolding studies of sheep liver tetrameric serine hydroxymethyltransferase (SHMT, EC 2.1.2.1) revealed that the enzyme assumed apparent random coil structure above 3 M guanidine hydrochloride (GdnHCl). In the presence of non-ionic detergent Brij-35 and polyethylene glycol, the 6 M GdnHCI unfolded enzyme could be completely (> 95%) refolded by a 40-fold dilution. The refolded enzyme was fully active and had kinetic constants similar to the native enzyme. The midpoint of inactivation (0.12 M GdnHCl) was well below the midpoint of unfolding (1.6±0.1 M GdnHCl) as monitored by far UV CD at 222 nm. In the presence of PLP, the midpoint of inactivation shifted to a higher concentration of GdnHCl (0.6 M) showing that PLP stabilizes the quaternary structure of the enzyme. However, 50% release of pyridoxal-5′-phosphate (PLP) from the active site occurred at a concentration (0.6 M) higher than the midpoint of inactivation suggesting that GdnHCl may also act as a competitive inhibitor of the enzyme at low concentrations which was confirmed by activity measurements. PLP was not required for the initiation of refolding and inactive tetramers were the end products of refolding which could be converted to active tetramers upon the addition of PLP. Size exclusion chromatography of the apoenzyme showed that the tetramer unfolds via the intermediate formation of dimers. Low concentrations (0.3–0.6 M) of GdnHCl stabilized at least one intermediate which was in slow equilibrium with the dimer. The binding of ANS was maximum at 0.4–0.6 M GdnHCl suggesting that the unfolding intermediate that accumulates at this concentration is less compact than the native enzyme.  相似文献   

3.
The mechanism of interaction of O-amino-D-serine (OADS) with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) (SHMT) was established by measuring changes in the enzyme activity, absorption spectra, circular dichroism (CD) spectra, and stopped-flow spectrophotometry. OADS was a reversible noncompetitive inhibitor (Ki = 1.8 microM) when serine was the varied substrate. The first step in the interaction of OADS with the enzyme was the disruption of enzyme-Schiff base, characterized by the rapid disappearance of absorbance at 425 nm (6.5 X 10(3) M-1 s-1) and CD intensity at 430 nm. Concomitantly, there was a rapid increase in absorbance and CD intensity at 390 nm. The spectral properties of this intermediate enabled its identification as pyridoxal 5'-phosphate (PLP). These changes were followed by a slow unimolecular step (2 X 10(-3) s-1) leading to the formation of PLP-OADS oxime, which was confirmed by its absorbance and fluorescence spectra and retention time on high-performance liquid chromatography. The PLP-OADS oxime was displaced from the enzyme by the addition of PLP as evidenced by the restoration of complete enzyme activity as well as by the spectral properties. The unique feature of the mechanism proposed for the interaction of OADS with sheep liver SHMT was the formation of PLP as an intermediate.  相似文献   

4.
The interaction of aminooxy compounds such as aminooxyacetate (AAA), L-canaline, and hydroxylamine with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) was studied by absorption spectra and stopped-flow spectrophotometry and compared with the unique feature of interaction of O-amino-D-serine (OADS) with the enzyme [Baskaran, N., Prakash, V., Appu Rao, A. G., Radhakrishnan, A. N., Savithri, H. S., & Appaji Rao, N. (1989) Biochemistry (preceding paper in this issue)]. The reaction of AAA (0.5 mM) with the Schiff base of the enzyme resulted in the formation of pyridoxal 5'-phosphate (PLP) and was biphasic with rate constants of 191 and 19 s-1. The formation of the PLP-AAA oxime measured by decrease in absorbance at 388 nm on interaction of AAA with the enzyme had a rate constant of 5.2 M-1 s-1. On the other hand, the reaction of L-canaline with the enzyme was slower as measured by the disruption of enzyme-Schiff base than the reaction of OADS and AAA. In contrast, the formation of PLP as an intermediate could not be detected upon the interaction of hydroxylamine with the enzyme. The reaction of D-cycloserine with the enzyme was much slower (1.6 x 10(2) M-1 s-1) than the aminooxy compounds. These observations indicate that the aminooxy compounds that are structural analogues of serine (OADS, AAA, and canaline) formed PLP as an intermediate prior to the formation of oxime, whereas with hydroxylamine such an intermediate could not be detected.  相似文献   

5.
An unusual intermediate bound to the enzyme was detected in the interaction of thiosemicarbazide with sheep liver serine hydroxymethyltransferase. This intermediate had absorbance maxima at 464 and 440 nm. Such spectra are characteristic of resonance stabilized intermediates detected in the interaction of substrates and quasi-substrates with pyridoxal phosphate enzymes. An intermediate of this kind has not been detected in the interaction of thiosemicarbazide with other pyridoxal phosphate enzymes. This intermediate was generated slowly (t 1/2 = 4 min) following the addition of thiosemicarbazide (200 microM) to sheep liver serine hydroxymethyltransferase (5 microM). It was bound to the enzyme as evidenced by circular dichroic bands at 464 and 440 nm and the inability to be removed upon Centricon filtration. The kinetics of interaction revealed that thiosemicarbazide was a slow binding reversible inhibitor in this phase with a k(on) of 11 M-1 s-1 and a k(off) of 5 x 10(-4) s-1. The intermediate was converted very slowly (k = 4 x 10(-5) s-1) to the final products, namely the apoenzyme and the thiosemicarbazone of pyridoxal phosphate. A minimal kinetic mechanism involving the initial conversion to the intermediate absorbing at longer wavelengths and the conversion of this intermediate to the final product, as well as, the formation of pyridoxal phosphate-thiosemicarbazone directly by an alternate pathway is proposed.  相似文献   

6.
Previous experiments suggesting that tetrahydrofolate binds to serine hydroxymethyltransferase with positive homotropic cooperativity have been reinvestigated. Our results show that the sigmoid-shaped tetrahydrofolate saturation curve, previously obtained by several other investigators, is due to the instability of tetrahydrofolate in the assay solution. Using a different assay method, we have shown that tetrahydrofolate gives a hyperbolic saturation curve with serine hydroxymethyltransferase. We could find no evidence, as suggested by other investigators, that heating the enzyme during purification destroyed its allosteric properties or that NADH binds to the enzyme as an allosteric effector. Evidence is presented that the loss of tetrahydrofolate during the assay period is due to oxidation by dissolved molecular oxygen.  相似文献   

7.
Serine hydroxymethyltransferase (EC 2.1.2.1) was purified from the cytosolic fraction of sheep liver by ammonium sulphate fractionation, CM-Sephadex chromatography, gel filtration using Ultrogel ACA 34 and Blue Sepharose affinity chromatography. The homogeneity of the enzyme was rigorously established by Polyacrylamide gel and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, isoelectrofocusing, ultracentrifugation, immunodiffusion and Immunoelectrophoresis. The enzyme was a homotetramer with a molecular weight of 210,000 ±5000. The enzyme showed homotropic cooperative interactions with tetrahydrofolate (nH =2.8) and a hyperbolic saturation pattern with L-serine. At the lowest concentration of tetrahydrofolate used (0.2 mM), only 5% of the added folate was oxidized during preincubation and assay. ThenH value was independent of the time of preincubation. Preincubation of the enzyme with serine resulted in a partial loss of the cooperative interactions (nH =1.6) with tetrahydrofolate. The enzyme was regulated allosterically by interaction with nicotinamide nucleotides; NADH was a positive effector while NAD+ was a negative allosteric effector. The subunit interactions were retained even at the temperature optimum of 60‡C unlike in the case of the monkey liver enzyme, where these interactions were absent at higher temperatures. D-Cycloserine, a structural analogue of serine caused a sigmoid pattern of inhibition, in contrast with the observations on the monkey liver enzyme. Cibacron blue F3GA completely inhibited the enzyme and this inhibition could be reversed by tetrahydrofolate. Unlike in the monkey liver enzyme, NAD+ and NADH gave considerable protection against this inhibition. The sheep liver enzyme differs significantly in its kinetic and regulatory properties from the serine hydroxymethyltransferases isolated from other sources.  相似文献   

8.
A binding assay for serine hydroxymethyltransferase   总被引:2,自引:0,他引:2  
A sensitive assay for measuring serine hydroxymethyltransferase activity has been developed, based on the binding of N5,N10-[14C]methylene tetrahydrofolate (THF) to DEAE-cellulose paper. The complete assay requires THF, pyridoxal 5'-phosphate, [14C]serine, and enzyme. The reaction is stopped by streaking an aliquot of the reaction mixture onto a square of DEAE-cellulose paper, washing the paper with water to remove unreacted serine, drying the paper, and counting the bound N5,N10-[14C]methylene-THF. To determine that the labeled product was N5,N10-methylene-THF, unlabeled formaldehyde, which exchanges with the labeled methylene carbon, was added after the product had accumulated; 2 min after the addition of formaldehyde the amount of labeled product was reduced by 50%, and by 85% after 10 min. In addition, glycine, which reverses the reaction, and hydroxylamine, which reacts with the methylene carbon, reduced the number of counts bound to the paper. Binding of product to the filter is proportional to both enzyme concentration and assay time. No counts were retained on phosphocellulose filters. This assay represents a new and simple method for measuring serine hydroxymethyltransferase activity, which can be used to measure enzyme activity in tissue homogenates and for screening large numbers of samples.  相似文献   

9.
Serine hydroxymethyltransferase purified from rabbit liver cytosol has at least two Asn residues (Asn(5) and Asn(220)) that are 67 and 30% deamidated, respectively. Asn(5) is deamidated equally to Asp and isoAsp, while Asn(220) is deamidated only to isoAsp. To determine the effect of these Asn deamidations on enzyme activity and stability a recombinant rabbit liver cytosolic serine hydroxymethyltransferase was expressed in Escherichia coli over a 5-h period. About 90% of the recombinant enzyme could be isolated with the two Asn residues in a nondeamidated form. Compared with the enzyme isolated from liver the recombinant enzyme had a 35% increase in catalytic activity but exhibited no significant changes in either affinity for substrates or stability. Introduction of Asp residues for either Asn(5) or Asn(220) did not significantly alter activity or stability of the mutant forms. In vitro incubation of the recombinant enzyme at 37 degrees C and pH 7.3 resulted in the rapid deamidation of Asn(5) to both Asp and isoAsp with a t(1/2) of 50-70 h, which is comparable to the rate found with small flexible peptides containing the same sequence. The t(1/2) for deamidation of Asn(220) was at least 200 h. This residue may become deamidated only after some unfolding of the enzyme. The rates for deamidation of Asn(5) and Asn(220) are consistent with the structural environment of the two Asn residues in the native enzyme. There are also at least two additional deamidation events that occur during prolonged incubation of the recombinant enzyme.  相似文献   

10.
Serine hydroxymethyltransferase (SHMT) from Bacillus stearothermophilus (bsSHMT) is a pyridoxal 5'-phosphate-dependent enzyme that catalyses the conversion of L-serine and tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. In addition, the enzyme catalyses the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids and transamination. In this article, we have examined the mechanism of the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids by SHMT. The three-dimensional structure and biochemical properties of Y51F and Y61A bsSHMTs and their complexes with substrates, especially L-allo-Thr, show that the cleavage of 3-hydroxy amino acids could proceed via Calpha proton abstraction rather than hydroxyl proton removal. Both mutations result in a complete loss of tetrahydrofolate-dependent and tetrahydrofolate-independent activities. The mutation of Y51 to F strongly affects the binding of pyridoxal 5'-phosphate, possibly as a consequence of a change in the orientation of the phenyl ring in Y51F bsSHMT. The mutant enzyme could be completely reconstituted with pyridoxal 5'-phosphate. However, there was an alteration in the lambda max value of the internal aldimine (396 nm), a decrease in the rate of reduction with NaCNBH3 and a loss of the intermediate in the interaction with methoxyamine (MA). The mutation of Y61 to A results in the loss of interaction with Calpha and Cbeta of the substrates. X-Ray structure and visible CD studies show that the mutant is capable of forming an external aldimine. However, the formation of the quinonoid intermediate is hindered. It is suggested that Y61 is involved in the abstraction of the Calpha proton from 3-hydroxy amino acids. A new mechanism for the cleavage of 3-hydroxy amino acids via Calpha proton abstraction by SHMT is proposed.  相似文献   

11.
The crystal structure of human liver cytosolic recombinant serine hydroxymethyltransferase (hcSHMT) suggested that Ser53 and Arg 263 could participate in the reaction catalyzed by SHMT. The mutation of Arg262 (corresponding to Arg263 in hcSHMT) to "A" in sheep liver cytosolic SHMT (scSHMT) resulted in a 5-fold increase in Km for L-Ser and a 5-fold decrease in kcat compared to scSHMT. Further, in R262A SHMT-glycine complex, the peak at 343 nm (geminal diamine) was more pronounced, compared to wild-type enzyme. Stopped-flow studies showed that the rate constant for the formation of glycine-geminal diamine for R262A SHMT was also decreased. The rate of reaction, concentration of spectral intermediates, fluorescence excitation maximum of glycine geminal diamine and interaction with methoxyamine were altered in R262A SHMT. Although Arg263 in hcSHMT is located outside the PLP binding pocket, it positions Tyr73 for interaction with PLP, by forked H-bonding with the carbonyl groups of main chain residues, Asn71 and Lys72 of the other subunit of the tight dimer. Mutation of Arg262 to Ala and the consequent alteration in orientation of PLP leads to decreased catalytic efficiency. Ser53 (in hcSHMT) is in hydrogen bonding distance to one of the carboxylate oxygens of the amino acid substrate, which also interacts with Tyr83 and Arg402. Replacement of Ser53 with Cys (using 'O' software program) in the structure of hcSHMT resulted in disruption of these interactions, whereas replacement with Ala (S53A) only weakened the substrate interactions. There was a 10-fold increase in Km and 20-fold decrease in catalytic activity efficiency for S52C SHMT, whereas S52A SHMT retained 20% of the activity without change in Km for serine. These results suggest that S52 affects substrate binding and catalysis.  相似文献   

12.
Chemical modification of amino acid residues with phenylglyoxal, diethylpyrocarbonate, and N-bromosuccinimide indicated that at least one residue each of arginine, histidine, and tryptophan were necessary for the activity of human liver serine hydroxymethyltransferase. Protection by substrates suggested that these residues might occur at the active site of the enzyme.  相似文献   

13.
Previous studies on the folding mechanism of Escherichia coli serine hydroxymethyltransferase (SHMT) showed that the final rate determining folding step was from an intermediate that contained two fully folded domains with N-terminal segments of approximately 55 residues and interdomain segments of approximately 50 residues that were still solvent exposed and subject to proteolysis. The interdomain segment contains 3 Pro residues near its N terminus and 2 Pro residues near its C terminus. The 5 Pro residues were each mutated to both a Gly and Ala residue, and each mutant SHMT was purified and characterized with respect to kinetic properties, stability, secondary structure, and folding mechanism. The results showed that Pro214 and Pro218 near the N terminus of the interdomain segment are not critical for folding, stability, or activity. The P216A mutant also retained most of the characteristics of the native enzyme, but its folding rate was altered. However, the P216G mutant was severely compromised in folding into a catalytically competent enzyme. Mutation of both Pro258 and Pro264 had altered folding kinetics and resulted in enzymes that expressed little catalytic activity. The Phe257-Pro258 bond is cis in its configuration, and the P258A mutant SHMT showed reduced thermal stability. Pro216, Pro258, and Pro264 are conserved in all 53 known sequences of this enzyme. The results are discussed in terms of the role of each Pro residue in maintaining the structure and function of SHMT and a possible role in pyridoxal 5'-phosphate addition to the apo-enzyme.  相似文献   

14.
The positive homotropic binding of tetrahydrofolate to monkey liver serine hydroxymethyltransferase was abolished on preincubating the enzyme with NADH and NADPH. NAD+ was a negative heterotropic effector, whereas NADP+ was without effect. The allosteric effects of nicotinamide nucleotides on the serine hydroxymethyltransferase, reported for the first time, lead to a better understanding of the regulation of the metabolic interconversion of folate coenzymes.  相似文献   

15.
The complete amino-acid sequence of sheep liver cytosolic serine hydroxymethyltransferase was determined from an analysis of tryptic, chymotryptic, CNBr and hydroxylamine peptides. Each subunit of sheep liver serine hydroxymethyltransferase consisted of 483 amin-acid residues. A comparison of this sequence with 8 other serine hydroxymethyltransferases revealed that a possible gene duplication event could have occurred after the divergence of animals and fungi. This analysis also showed independent duplication of SHMT genes in Neurospora crassa. At the secondary structural level, all the serine hydroxymethyltransferases belong to the α/β category of proteins. The predicted secondary structure of sheep liver serine hydroxymethyltransferase was similar to that of the observed structure of tryptophan synthase, another pyridoxal 5′-phosphate containing enzyme, suggesting that sheep liver serine hydroxymethyltransferase might have a similar pyridoxal 5′-phosphate binding domain. In addition, a conserved glycinerich region, G L Q G G P, was identified in all the serine hydroxymethyltransferases and could be important in pyridoxal 5′-phosphate binding. A comparison of the cytosolic serine hydroxymethyltransferases from rabbit and sheep liver with other proteins sequenced from both these sources showed that serine hydroxymethyltransferase was a highly conserved protein. In was slightly less conserved than cytochrome c but better conserved than myoglobin, both of which are well known evolutionary markers. C67 and C203 were specifically protected by pyridoxal 5′-phosphate against modification with [14C]iodoacetic acid, while C247 and C261 were buried in the native serine hydroxymethyltransferase. However, the cysteines are not conserved among the various serine hydroxymethyltransferases. The exact role of the cysteines in the reaction catalyzed by serine hydroxymethyltransferase remains to be elucidated.  相似文献   

16.
Both serine hydroxymethyltransferase and aspartate aminotransferase belong to the alpha-class of pyridoxal-5'-phosphate (pyridoxalP)-dependent enzymes but exhibit different reaction and substrate specificities. A comparison of the X-ray structure of these two enzymes reveals that their active sites are nearly superimposable. In an attempt to change the reaction specificity of serine hydroxymethyltransferase to a transaminase, His 230 was mutated to Tyr which is the equivalent residue in aspartate aminotransferase. Surprisingly, the H230Y mutant was found to catalyze oxidation of NADH in an enzyme concentration dependent manner instead of utilizing L-aspartate as a substrate. The NADH oxidation could be linked to oxygen consumption or reduction of nitrobluetetrazolium. The reaction was inhibited by radical scavengers like superoxide dismutase and D-mannitol. The Km and kcat values for the reaction of the enzyme with NADH were 74 microM and 5. 2 x 10-3 s-1, respectively. This oxidation was not observed with either the wild type serine hydroxymethyltransferase or H230A, H230F or H230N mutants. Thus, mutation of H230 of sheep liver serine hydroxymethyltransferase to Tyr leads to induction of an NADH oxidation activity implying that tyrosyl radicals may be mediating the reaction.  相似文献   

17.
The mechanism of interaction of methoxyamine with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) (SHMT) was established by measuring changes in enzyme activity, visible absorption spectra, circular dichroism and fluorescence, and by evaluating the rate constant by stopped-flow spectrophotometry. Methoxyamine can be considered as the smallest substituted aminooxy derivative of hydroxylamine. It was a reversible noncompetitive inhibitor (Ki = 25 microM) of SHMT similar to O-amino-D-serine. Like in the interaction of O-amino-D-serine and aminooxyacetic acid, the first step in the reaction was very fast. This was evident by the rapid disappearance of the enzyme-Schiff base absorbance at 425 nm with a rate constant of 1.3 x 10(3) M-1 sec-1 and CD intensity at 430 nm. Concomitantly, there was an increase in absorbance at 388 nm (intermediate I). The next step in the reaction was the unimolecular conversion (1.1 x 10(-3) sec-1) of this intermediate to the final oxime absorbing at 325 nm. The identity of the oxime was established by its characteristic fluorescence emission at 460 nm when excited at 360 nm and by high performance liquid chromatography. These results highlight the specificity in interactions of aminooxy compounds with sheep liver serine hydroxymethyltransferase and that the carboxyl group of the inhibitors enhances the rate of the initial interaction with the enzyme.  相似文献   

18.
The three-dimensional structures of human and rabbit liver cytosolic recombinant serine hydroxymethyltransferases (hcSHMT and rcSHMT) revealed that E75 and Y83 (numbering according to hcSHMT) are probable candidates for proton abstraction and Calpha-Cbeta bond cleavage in the reaction catalyzed by serine hydroxymethyltransferase. Both these residues are completely conserved in all serine hydroxymethyltransferases sequenced to date. In an attempt to decipher the role of these residues in sheep liver cytosolic recombinant serine hydroxymethyltransferase (scSHMT), E74 (corresponding residue is E75 in hcSHMT) was mutated to Q and K, and Y82 (corresponding residue is Y83 in hcSHMT) was mutated to F. The specific activities using serine as the substrate for the E74Q and E74K mutant enzymes were drastically reduced. These mutant enzymes catalyzed the transamination of D-alanine and 5,6,7, 8-tetrahydrofolate independent retroaldol cleavage of Lallo threonine at rates comparable with wild-type enzyme, suggesting that E74 was not involved directly in the proton abstraction step of catalysis, as predicted earlier from crystal structures of hcSHMT and rcSHMT. There was no change in the apparent Tm value of E74Q upon the addition of L-serine, whereas the apparent Tm value of scSHMT was enhanced by 10 degrees C. Differential scanning calorimetric data and proteolytic digestion patterns in the presence of L-serine showed that E74Q was different to scSHMT. These results indicated that E74 might be required for the conformational change involved in reaction specificity. It was predicted from the crystal structures of hcSHMT and rcSHMT that Y82 was involved in hemiacetal formation following Calpha-Cbeta bond cleavage of L-serine and mutation of this residue to F could lead to a rapid release of HCHO. However, the Y82F mutant had only 5% of the activity and failed to form a quinonoid intermediate, suggesting that this residue is not involved in the formation of the hemiacetal intermediate, but might be involved indirectly in the abstraction of the proton and in stabilizing the quinonoid intermediate.  相似文献   

19.
Liu X  Reig B  Nasrallah IM  Stover PJ 《Biochemistry》2000,39(38):11523-11531
The 5' untranslated region (UTR) of the human cytoplasmic serine hydroxymethyltransferase (cSHMT) message is alternatively spliced, creating a full-length 5' UTR (LUTR) encoded within exons 1-3 and a shorter UTR (SUTR) that results from excision of exon 2. The role of the 5' UTRs in cSHMT expression was investigated by fusing the cSHMT 5' UTRs to the 5' end of the luciferase gene. Human cSHMT protein at 10 microM inhibits in vitro translation of cSHMT 5' UTR-luciferase fusion mRNA templates by more than 90%, but does not inhibit translation of the luciferase message lacking the UTR. Translation inhibition is independent of amino acid and folate substrate binding to the cSHMT enzyme. The cSHMT SUTR-luciferase mRNA binds to the cSHMT.glycine.5-formyltetrahydrofolate ternary complex with an apparent K(d) of 10 microM. Gel mobility shift assays demonstrate that the human cSHMT protein binds to the cSHMT LUTR-luciferase fusion mRNA in the presence and absence of glycine and 5-formyltetrahydrofolate pentaglutamate. The fusion cSHMT SUTR-luciferase message at 65 microM inhibits the cSHMT-catalyzed cleavage of allothreonine as a partial mixed type inhibitor, reducing both k(cat) and K(m) by 40 and 75%, respectively, while tRNA has no effect on cSHMT catalysis. These studies indicate that the cSHMT protein can bind mRNA, and displays increased affinity for the 5' untranslated region of its mRNA.  相似文献   

20.
The complete amino acid sequence of mitochondrial serine hydroxymethyltransferase from rabbit liver was determined. The sequence was obtained from analysis of peptides isolated from chymotryptic, cyanogen bromide, and limited acid cleavages of the protein. The enzyme consists of four identical subunits, each of 475 residues, i.e. 8 residues shorter than the subunit of the corresponding cytosolic isoenzyme. The sequences of the two rabbit proteins are easily aligned, provided a gap of 5 residues near the amino terminus and a gap of 3 residues near the carboxyl terminus are included in the mitochondrial sequence. The overall degree of identity between the two isoenzymes is 61.9%, whereas the structural identity of each eukaryotic isoenzyme with the corresponding Escherichia coli enzyme is about 40%. The rabbit isoenzymes are about 70 residues longer than the E. coli enzyme, with one-half of these residues accounted for by insertions in both isoenzymes near their carboxyl terminus. Predictions of secondary structure and calculations of hydropathy profiles are also presented, suggesting an even more extensive degree of identity in the three-dimensional folding of the three proteins, in accord with the known similarity of their catalytic properties. Evidence was obtained for the existence of additional molecular forms of the mitochondrial protein, differing in the absence of some amino acid residues at the amino terminus of the polypeptide chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号