首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu Q  Cai H  Xu Y  Li Y  Li R  Wang P 《Biosensors & bioelectronics》2006,22(2):318-322
Human olfactory system can distinguish thousands of odors. In order to realize the biomimetic design of electronic nose on the principle of mammalian olfactory system, this article reports an olfactory cell-based biosensor as a real bionic technique for odorants detection. Effective cultures of olfactory receptor neurons and olfactory bulb cells have been achieved on the semiconductor chip. Using light-addressable potentiometric sensor (LAPS) as sensing chip to monitor extracellular potential of the neurons, the response under stimulations of the odorants or neurotransmitters, such as acetic acid and glutamic acid, was tested. The results demonstrate that this kind of hybrid system of LAPS and olfactory neurons, which is sensitive to odorous changes, has great potential and is promising to be used as a novel neurochip of bioelectronic nose for detecting odors.  相似文献   

2.
Cyclic AMP is the primary second messenger mediating odorant signal transduction in mammals. A number of studies indicate that cyclic GMP is also involved in a variety of other olfactory signal transduction processes, including adaptation, neuronal development, and long-term cellular responses in the setting of odorant stimulation. However, the mechanisms that control the production and degradation of cGMP in olfactory sensory neurons (OSNs) remain unclear. Here, we investigate these mechanisms using primary cultures of OSNs. We demonstrate that odorants increase cGMP levels in intact OSNs in vitro. Different from the rapid and transient cAMP responses to odorants, the cGMP elevation is both delayed and sustained. Inhibition of soluble guanylyl cyclase and heme oxygenase blocks these odorant-induced cGMP increases, whereas inhibition of cGMP PDEs (phosphodiesterases) increases this response. cGMP PDE activity is increased by odorant stimulation, and is sensitive to both ambient calcium and cAMP concentrations. Calcium stimulates cGMP PDE activity, whereas cAMP and protein kinase A appears to inhibit it. These data demonstrate a mechanism by which odorant stimulation may regulate cGMP levels through the modulation of cAMP and calcium level in OSNs. Such interactions between odorants and second messenger systems may be important to the integration of immediate and long-term responses in the setting odorant stimulation.  相似文献   

3.
Liu Q  Ye W  Hu N  Cai H  Yu H  Wang P 《Biosensors & bioelectronics》2010,26(4):1672-1678
Olfactory systems of human beings and animals have the abilities to sense and distinguish varieties of odors. In this study, a bioelectronic nose was constructed by fixing biological tissues onto the surface of light-addressable potentiometric sensor (LAPS) to mimic human olfaction and realize odor differentiation. The odorant induced potentials on tissue-semiconductor interface was analyzed by sensory transduction theory and sheet conductor model. The extracellular potentials of the receptor cells in the olfactory epithelium were detected by LAPS. Being stimulated by different odorants, such as acetic acid and butanedione, olfactory epithelium activities were analyzed on basis of local field potentials and presented different firing modes. The signals fired in different odorants could be distinguished into different clusters by principal component analysis (PCA). Therefore, with cellular populations well preserved, the epithelium tissue and LAPS hybrid system will be a promising neuron chip of olfactory biosensors for odor detecting.  相似文献   

4.
MQ Nguyen  NJ Ryba 《PloS one》2012,7(7):e41899
In mammals, odorants are detected by a large family of receptors that are each expressed in just a small subset of olfactory sensory neurons (OSNs). Here we describe a strain of transgenic mice engineered to express an octanal receptor in almost all OSNs. Remarkably, octanal triggered a striking and involuntary phenotype in these animals, with passive exposure regularly inducing seizures. Octanal exposure invariably resulted in widespread activation of OSNs but interestingly seizures only occurred in 30-40% of trials. We hypothesized that this reflects the need for the olfactory system to filter strong but slowly-changing backgrounds from salient signals. Therefore we used an olfactometer to control octanal delivery and demonstrated suppression of responses whenever this odorant is delivered slowly. By contrast, rapid exposure of the mice to octanal induced seizure in every trial. Our results expose new details of olfactory processing and provide a robust and non-invasive platform for studying epilepsy.  相似文献   

5.
Xu G  Ye X  Qin L  Xu Y  Li Y  Li R  Wang P 《Biosensors & bioelectronics》2005,20(9):1757-1763
Cell-based biosensors incorporate cells as sensing elements that convert changes in immediate environment to signals for processing. This paper reports an investigation on light-addressable potentiometric sensor (LAPS) to be used as a possible cell-base biosensor that will enable us to monitor extracellular action potential of single living cell under stimulant. In order to modify chip surface and immobilize cells, we coat a layer of poly-L-ornithine and laminin on surface of LAPS chip on which rat cortical cells are grown well. When 10 microg/ml acetylcholine solution is administrated, the light pointer is focused on a single neuronal cell and the extracellular action potential of the targeted cell is recorded with cell-based biosensor based on LAPS. The results demonstrate that this kind of biosensor has potential to monitor electrophysiology of living cell non-invasive for a long term, and to evaluate drugs primarily.  相似文献   

6.
This study developed a surface plasmon resonance (SPR)-based live-cell biosensor with enhanced sensitivity for label-free ligand binding assay of G-protein-coupled receptors (GPCRs). The β2-adrenoceptor was heterologously expressed in human embryonic kidney-293 cells. The specific ligand binding function of expressed β2-adrenoceptor was monitored by SPR via refractive index measurement. The results indicate the expressed β2-adrenoceptor can respond to isoprenaline with high specificity. The SPR signals can be enhanced more than three times by the use of LY294002. This biosensor can be applied in the functional assay of GPCRs by detecting the specific interactions between GPCRs and their target ligands.  相似文献   

7.
Olfactory receptors, which are responsible for sensing odor molecules, form the largest G protein-coupled receptor (GPCR) family in mammalian animals. These proteins play an important role in the detection of chemical signals and signal transduction to the brain. Currently, only a limited number of olfactory receptors have been characterized, which is mainly due to the lack of sensitive and efficient tools for performing functional assays of these receptors. This paper describes a novel surface acoustic wave (SAW)-based biosensor for highly sensitive functional assays of olfactory receptors. An olfactory receptor of Caenorhabditis elegans, ODR-10, was expressed on the plasma membrane of human breast cancer MCF-7 cells, which was used as a model system for this study. For specific odorant response assays, the membrane fraction of MCF-7 cells containing ODR-10 was extracted and integrated with our SAW sensors. The response of ODR-10 to various odorants was monitored by recording the resonance frequency shifts of SAWs applied to the sensor. Our results show that heterologously expressed ODR-10 receptors can specifically respond to diacetyl, its natural ligand. Dose-dependent responses were obtained by performing measurements using various concentrations of diacetyl. The sensitivity of this biosensor is 2 kHz/ng and can detect concentrations as low as 10−10 mM, which is 10× lower than what has previously been reported. This biosensor can be used to characterize odorant response profiles of olfactory receptors and provide information rich data for functional assays of olfactory receptors. In addition to providing a greater understanding of the biological mechanisms of GPCRs, such data holds great potential in many other fields such as food industry, biomedicine, and environmental protection.  相似文献   

8.
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs'' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.  相似文献   

9.
1. The effects of both adenyl cyclase inhibitors (MDL12330A and SQ22536) have been studied on the ionic transport induced by vasopressin and isoprenaline across the frog skin. 2. MDL12330A inhibits the vasopressin action on the short-circuit current (SCC), confirming that this effect is cAMP-mediated. 3. On the other hand, isoprenaline action on the SCC is unaffected by MDL12330A. However, this lack of effect is not a sufficient argument against the role of cAMP in this action; in fact, as MDL12330A is also an inhibitor of cAMP phosphodiesterase, this action could mask the inhibitory effect of the drug on adenyl cyclase. 4. By using the other adenyl cyclase inhibitor (SQ22536), probably deprived of effect on the cAMP phosphodiesterase, we obtained a strong inhibition of isoprenaline action on the SCC. Thus we conclude that the actions of isoprenaline on the ionic transport across the frog skin are also cAMP-mediated.  相似文献   

10.
Olfactory stimulation activates multiple signaling cascades in order to mediate activity-driven changes in gene expression that promote neuronal survival. To date, the mechanisms involved in activity-dependent olfactory neuronal survival have yet to be fully elucidated. In the current study, we observed that olfactory sensory stimulation, which caused neuronal activation, promoted activation of the phosphatidylinositol 3′-kinase (PI3K)/Akt pathway and the expression of Bcl-2, which were responsible for olfactory receptor neuron (ORN) survival. We demonstrated that Bcl-2 expression increased after odorant stimulation both in vivo and in vitro. We also showed that odorant stimulation activated Akt, and that Akt activation was completely blocked by incubation with both a PI3K inhibitor (LY294002) and Akt1 small interfering RNA. Moreover, blocking the PI3K/Akt pathway diminished the odorant-induced Bcl-2 expression, as well as the effects on odorant-induced ORN survival. A temporal difference was noted between the activation of Akt1 and the expression of Bcl-2 following odorant stimulation. Blocking the PI3K/Akt pathway did not affect ORN survival in the time range prior to the increase in Bcl-2 expression, implying that these two events, activation of the PI3K pathway and Bcl-2 induction, were tightly connected to promote post-translational ORN survival. Collectively, our results indicated that olfactory activity activated PI3K/Akt, induced Bcl-2, and promoted long term ORN survival as a result.  相似文献   

11.
Interleukin 15 (IL-15) is a potent stimulator of proliferation and an inhibitor of apoptosis in lymphocytes. We attempted to elucidate the mechanism of IL-15 function in HaCaT keratinocytes. We found that 5-bromo-2(')-deoxyuridine incorporation increased in a dose-dependent manner with IL-15. This was blocked by MEK inhibitor U0126 or PI 3-K inhibitor LY294002. ERK1/2 and Akt phosphorylation by IL-15 were detected in a dose- and time-dependent manner. U0126 and LY294002 abolished ERK1/2 and Akt phosphorylation, respectively. DNA fragmentation and Annexin V binding accompanied by UVB-induced apoptosis were reduced by 30-50% with IL-15. Taken together, IL-15 induced cellular proliferation and had an anti-apoptotic effect on keratinocytes, in which ERK1/2 and Akt phosphorylation played crucial roles. The signal transduction pathways of IL-15 in keratinocytes were partially elucidated; they share a substantial part with growth signals induced by EGF. These results suggest a therapeutic approach to inflammatory skin diseases by controlling these signals.  相似文献   

12.
We have established a cell culture system that reproduces morphogenic processes in the developing mammary gland. EpH4 mouse mammary epithelial cells cultured in matrigel form branched tubules in the presence of hepatocyte growth factor/scatter factor (HGF/SF), the ligand of the c-met tyrosine kinase receptor. In contrast, alveolar structures are formed in the presence of neuregulin, a ligand of c-erbB tyrosine kinase receptors. These distinct morphogenic responses can also be observed with selected human mammary carcinoma tissue in explant culture. HGF/SF-induced branching was abrogated by the PI3 kinase inhibitors wortmannin and LY294002. In contrast, neuregulin- induced alveolar morphogenesis was inhibited by the MAPK kinase inhibitor PD98059. The c-met–mediated response could also be evoked by transfection of a c-met specific substrate, Gab1, which can activate the PI3 kinase pathway. An activated hybrid receptor that contained the intracellular domain of c-erbB2 receptor suffices to induce alveolar morphogenesis, and was observed in the presence of tyrosine residues Y1028, Y1144, Y1201, and Y1226/27 in the substrate-binding domain of c-erbB2. Our data demonstrate that c-met and c-erbB2 signaling elicit distinct morphogenic programs in mammary epithelial cells: formation of branched tubules relies on a pathway involving PI3 kinase, whereas alveolar morphogenesis requires MAPK kinase.  相似文献   

13.
Lodi A  Ronen SM 《PloS one》2011,6(10):e26155
Targeted therapeutic approaches are increasingly being implemented in the clinic, but early detection of response frequently presents a challenge as many new therapies lead to inhibition of tumor growth rather than tumor shrinkage. Development of novel non-invasive methods to monitor response to treatment is therefore needed. Magnetic resonance spectroscopy (MRS) and magnetic resonance spectroscopic imaging are non-invasive imaging methods that can be employed to monitor metabolism, and previous studies indicate that these methods can be useful for monitoring the metabolic consequences of treatment that are associated with early drug target modulation. However, single-metabolite biomarkers are often not specific to a particular therapy. Here we used an unbiased 1H MRS-based metabolomics approach to investigate the overall metabolic consequences of treatment with the phosphoinositide 3-kinase inhibitor LY294002 and the heat shock protein 90 inhibitor 17AAG in prostate and breast cancer cell lines. LY294002 treatment resulted in decreased intracellular lactate, alanine fumarate, phosphocholine and glutathione. Following 17AAG treatment, decreased intracellular lactate, alanine, fumarate and glutamine were also observed but phosphocholine accumulated in every case. Furthermore, citrate, which is typically observed in normal prostate tissue but not in tumors, increased following 17AAG treatment in prostate cells. This approach is likely to provide further information about the complex interactions between signaling and metabolic pathways. It also highlights the potential of MRS-based metabolomics to identify metabolic signatures that can specifically inform on molecular drug action.  相似文献   

14.
The sensitivity of adipocytes to lipolytic agents is increased after starvation. In this study, we found that LY294002, an inhibitor of phosphatidylinositol-3 kinase (PI3K), in the concentration of more than 50 microM potentiates lipolysis induced by adenosine deaminase in adipocytes from fed rats (f-adipocytes), but not from starved rats (s-adipocytes). It also enhanced the sensitivity to lipolytic action of isoproterenol in f-adipocytes much more than s-adipocytes. The target of LY294002 may be an anti-lipolytic regulator expressed in response to food intake. Since another PI3K inhibitor, wortmannin, or a phosphodiesterase 3 (PDE3) inhibitor, cilostamide, failed to cause any specific effect to f-adipocytes, the PI3K-PDE3B pathway cannot be a target of LY294002. We found that LY294002 inhibits efficiently the cytoplasmic PDE activity of adipocytes. Rolipram, a specific inhibitor of PDE4, also inhibited the cytoplasmic PDE and caused a preferential increase of lipolysis in f-adipocytes. LY294002 blunted the actions of rolipram on lipolysis and the PDE activity. LY294002 accelerated protein kinase A activation. These data suggest that the rolipram-sensitive PDE4 is an anti-lipolytic enzyme expressed according to food intake. LY294002 may potentiate lipolysis through inhibition of the PDE4.  相似文献   

15.
The Ca2+-activated Cl channel is considered a key constituent of odor transduction. Odorant binding to a specific receptor in the cilia of olfactory sensory neurons (OSNs) triggers a cAMP cascade that mediates the opening of a cationic cyclic nucleotide-gated channel (CNG), allowing Ca2+ influx. Ca2+ ions activate Cl channels, generating a significant Cl efflux, with a large contribution to the receptor potential. The Anoctamin 2 channel (ANO2) is a major constituent of the Cl conductance, but its knock-out has no impairment of behavior and only slightly reduces field potential odorant responses of the olfactory epithelium. Likely, an additional Ca2+-activated Cl channel of unknown molecular identity is also involved. In addition to ANO2, we detected two members of the ClCa family of Ca2+-activated Cl channels in the rat olfactory epithelium, ClCa4l and ClCa2. These channels, also expressed in the central nervous system, may correspond to odorant transduction channels. Whole Sprague Dawley olfactory epithelium nested RT-PCR and single OSNs established that the mRNAs of both channels are expressed in OSNs. Real time RT-PCR and full length sequencing of amplified ClCa expressed in rat olfactory epithelium indicated that ClCa4l is the most abundant. Immunoblotting with an antibody recognizing both channels revealed immunoreactivity in the ciliary membrane. Immunochemistry of olfactory epithelium and OSNs confirmed their ciliary presence in a subset of olfactory sensory neurons. The evidence suggests that ClCa4l and ClCa2 might play a role in odorant transduction in rat olfactory cilia.  相似文献   

16.
In this study we use a taxon-based approach to examine previous, as well as new findings on several topics pertaining to the peripheral olfactory components in teleost fishes. These topics comprise (1) the gross anatomy of the peripheral olfactory organ, including olfactory sensory neuron subtypes and their functional parameters, (2) the ultrastructure of the olfactory epithelium, and (3) recent findings regarding the development of the nasal cavity and the olfactory epithelium. The teleosts are living ray-finned fish, and include descendants of early-diverging orders (e.g., salmon), specialized descendants (e.g., goldfish and zebrafish), as well as the Acanthopterygii, numerous species with sharp bony rays, including perch, stickleback, bass and tuna. Our survey reveals that the olfactory epithelium lines a multi-lamellar olfactory rosette in many teleosts. In Acanthopterygii, there are also examples of flat, single, double or triple folded olfactory epithelia. Diverse species ventilate the olfactory chamber with a single accessory nasal sac, whereas the presence of two sacs is confined to species within the Acanthopterygii. Recent studies in salmonids and cyprinids have shown that both ciliated olfactory sensory neurons (OSNs) and microvillous OSNs respond to amino acid odorants. Bile acids stimulate ciliated OSNs, and nucleotides activate microvillous OSNs. G-protein coupled odorant receptor molecules (OR-, V1R-, and V2R-types) have been identified in several teleost species. Ciliated OSNs express the G-protein subunit Gαolf/s, which activates cyclic AMP during transduction. Localization of G protein subunits Gα0 and Gαq/11 to microvillous or crypt OSNs, varies among different species. All teleost species appear to have microvillous and ciliated OSNs. The recently discovered crypt OSN is likewise found broadly. There is surprising diversity during ontogeny. In some species, OSNs and supporting cells derive from placodal cells; in others, supporting cells develop from epithelial (skin) cells. In some, epithelial cells covering the developing olfactory epithelium degenerate, in others, these retract. Likewise, there are different mechanisms for nostril formation. We conclude that there is considerable diversity in gross anatomy and development of the peripheral olfactory organ in teleosts, yet conservation of olfactory sensory neuron morphology. There is not sufficient information to draw conclusions regarding the diversity of teleost olfactory receptors or transduction cascades.  相似文献   

17.
Based on pharmacological studies of chemosensory transduction in transient receptor potential channel M5 (TRPM5) knockout mice it was hypothesized that this channel is involved in transduction for a subset of putative pheromones in mouse olfactory sensory neurons (OSNs). Yet, in the same study an electroolfactogram (EOG) in the mouse olfactory epithelium showed no significant difference in the responses to pheromones (and odors) between wild type and TRPM5 knockout mice. Here we show that the number of OSNs expressing TRPM5 is increased by unilateral naris occlusion. Importantly, EOG experiments show that mice lacking TRPM5 show a decreased response in the occluded epithelia to putative pheromones as opposed to wild type mice that show no change upon unilateral naris occlusion. This evidence indicates that under decreased olfactory sensory input TRPM5 plays a role in mediating putative pheromone transduction. Furthermore, we demonstrate that cyclic nucleotide gated channel A2 knockout (CNGA2-KO) mice that show substantially decreased or absent responses to odors and pheromones also have elevated levels of TRPM5 compared to wild type mice. Taken together, our evidence suggests that TRPM5 plays a role in mediating transduction for putative pheromones under conditions of reduced chemosensory input.  相似文献   

18.
The contributions of guanylyl cyclases to sensory signaling in the olfactory system have been unclear. Recently, studies of a specialized subpopulation of olfactory sensory neurons (OSNs) located in the main olfactory epithelium have provided important insights into the neuronal function of one receptor guanylyl cyclase, GC-D. Mice expressing reporters such as β-galactosidase and green fluorescent protein in OSNs that normally express GC-D have allowed investigators to identify these neurons in situ, facilitating anatomical and physiological studies of this sparse neuronal population. The specific perturbation of GC-D function in vivo has helped to resolve the role of this guanylyl cyclase in the transduction of olfactory stimuli. Similar approaches could be useful for the study of the orphan receptor GC-G, which is expressed in another distinct subpopulation of sensory neurons located in the Grueneberg ganglion. In this review, we discuss key findings that have reinvigorated the study of guanylyl cyclase function in the olfactory system.  相似文献   

19.
Olfactory marker protein (OMP) is highly and selectively expressed in primary olfactory sensory neurons (OSNs) across species, but its physiological function remains unclear. Previous studies in the olfactory epithelium suggest that it accelerates the neural response to odorants and may modulate the odorant-selectivity of OSNs. Here we used a line of gene-targeted mice that express the fluorescent exocytosis indicator synaptopHluorin in place of OMP to compare spatiotemporal patterns of odorant-evoked neurotransmitter release from OSNs in adult mice that were heterozygous for OMP or OMP-null. We found that these patterns, which constitute the primary neural representation of each odorant, developed more slowly during the odorant presentation in OMP knockout mice but eventually reached the same magnitude as in heterozygous mice. In the olfactory bulb, each glomerulus receives synaptic input from a subpopulation of OSNs that all express the same odor receptor and thus typically respond to a specific subset of odorants. We observed that in OMP knockout mice, OSNs innervating a given glomerulus typically responded to a broader range of odorants than in OMP heterozygous mice and thus each odorant evoked synaptic input to a larger number of glomeruli. In an olfactory habituation task, OMP knockout mice behaved differently than wild-type mice, exhibiting a delay in their onset to investigate an odor stimulus during its first presentation and less habituation to that stimulus over repeated presentations. These results suggest that the actions of OMP in olfactory transduction carry through to the primary sensory representations of olfactory stimuli in adult mice in vivo.  相似文献   

20.
Mouse embryonic stem (mES) cells have short duration of their cell cycle and are capable of proliferating in the absence of growth factors. To find out which signaling pathways contribute to the regulation of the mES cell cycle, we used pharmacological inhibitors of MAP and PI3 kinase cascades. The MAP kinase inhibitors as well as serum withdrawal did not affect mES cell cycle distribution, whereas the inhibitor of PI3K activity, LY294002, induced accumulation of cells in G(1) phase followed by apoptotic cell death. Serum withdrawal also causes apoptosis, but it does not change the content and activity of cell cycle regulators. In contrast, in mES cells treated with LY294002, the activities of Cdk2 and E2F were significantly decreased. Interestingly, LY294002had a much stronger effect on cell cycle distribution in low serum conditions, implying that serum can promote G(1)-->S transition of mES cells by a LY294002-resistant mechanism. Thus, proliferation of mES cells is maintained by at least two separate mechanisms: a LY294002-sensitive pathway, which is active even in the absence of serum, and LY294002-resistant, but serum-dependent, pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号