首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive label-free electrochemical immunosensing platform was designed by a redox matrix of gold nanoparticles (GNPs), Azure І and multi-wall carbon nanotubes (MWCNT) self-assemblying nanocomposite. To construct the immunosensor, MWCNT was first dispersed in Nafion (Nf) to obtain a homogeneous solution and then it was dropped on the surface of the gold electrode (Au). Then the positively-charged redox molecule, Azure І, was entrapped into MWCNT–Nf film to form a redox nanostructural membrane. Next, the negatively charged gold nanoparticles (GNPs) were assembled to the interface through the electrostatic force. Finally, carcinoembryonic antibody molecules could be absorbed into the GNPs/Azure І/MWCNT–Nf immobilization matrix. Using carcinoembryonic antigen (CEA) as a model protein, the electrochemical immunosensor exhibited good stability and reproducibility, as well as good selectivity and storage stability. This strategy presented a promising platform for sensitive and facile monitoring of CEA.  相似文献   

2.
A label-free electrochemical immunosensor based on Nafion/carbon nanotubes (CNTs)/charged pyridinecarboxaldehyde composite film was developed for the detection of hepatitis B surface antigen. Nafion/CNTs/charged pyridinecarboxaldehyde nanocomposites were prepared by dispersing charged pyridinecarboxaldehyde and CNTs in Nafion solution. The nanocomposites were cast on the electrode surface to form aldehyde-terminated composite film that can covalently bind antibody on the film without using other reagent. The immunosensor response was linearly changed with hepatitis B surface antigen concentration in the range from 0.1 to 25 ng ml−1 with a detection limit (signal/noise ratio = 3) of 0.04 ng ml−1. Some important advantages such as simple preparation, good stability, reproducibility, and selectivity of the immunosensor were achieved.  相似文献   

3.
A novel strategy for the fabrication of sensitive immunosensor to detect alpha-fetoprotein (AFP) in human serum has been proposed. The immunosensor was prepared by immobilizing AFP antigen onto the glassy carbon electrode (GC) modified by gold nanoparticles and carbon nanotubes doped chitosan (GNP/CNT/Ch) film. GNP/CNT hybrids were produced by one-step synthesis based on the direct redox reaction. The electrochemical properties of GNP/CNT/Ch films were characterized by impedance spectroscopy and cyclic voltammetry. It was indicated that GNP/CNT nanohybrid acted as an electron promoter and accelerated the electron transfer. Sample AFP, immobilized AFP, and alkaline phosphatase (ALP)-labeled antibody were incubated together for the determination based on a competitive immunoassay format. After the immunoassay reaction, the bound ALP label on the modified GC led to an amperometric response of 1-naphthyl phosphate (1-NP), which was changed with the different antigen concentrations in solution. Under the optimized experimental conditions, the resulting immunosensor could detect AFP in a linear range from 1 to 55 ng ml(-1) with a detection limit of 0.6 ng ml(-1). The proposed immunosensor, by using GNP/CNT/Ch as the immobilization matrix of AFP, offers an excellent amperometric response of ALP-anti-AFP to 1-NP. The immunosensor provided a new alternative to the application of other antigens or other bioactive molecules.  相似文献   

4.
In this work, protonated l-cysteine was entrapped in Nafion (Nf) membrane by cation exchange function, forming Nf-Cys (cysteine) composite membrane, which was more stable, compact, biocompatible, and favorable for mass and electron transfer compared with Nf film solely. Then gold (Au) nanoparticles were adsorbed onto the electrode surface by thiol groups on the composite membrane. After that, nano-Au monolayer was formed, onto which carcinoembryonic antibody was loaded to prepare carcinoembryonic antigen (CEA) immunosensor. The results indicated that the immunosensor had good current response for CEA using potassium ferricyanide as the redox probe. A linear concentration range of 0.01 to 100 ng/ml with a detection limit of 3.3 pg/ml (signal/noise = 3) was observed. Moreover, the morphology of the modified Au substrates was investigated with atomic force microscopy, and the electrochemical properties and performance of modified electrodes were investigated by cyclic voltammograms and electrochemical impendence spectroscopy. The results exhibited that the immunosensor has advantages of simple preparation, high sensitivity, good stability, and long life expectancy. Thus, the method can be used for CEA analysis.  相似文献   

5.
A new current amplified immunosensor for the determination of carcinoembryonic antigen (CEA) was demonstrated in this work. The electrode architecture was fabricated by positively charged toluidine blue (TB) coated on negatively charged poly-sulfanilic acid (PSAA) modified glassy carbon electrode (GCE) surface through electrostatic interactions to form a TB/PSAA film, which provided an interface containing amine groups to assemble gold nanoparticles (nano-Au) for immobilization of carcinoembryonic antibody (anti-CEA) and horseradish peroxidase (HRP) instead of bovine serum albumin (BSA) to block sites against non-specific binding. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to characterize the electrochemical properties of the modified processes. The CVs reduction current of the immunosensor charged linearly in two concentration ranges of CEA from 0.5 to 5.0 and 5.0 to 120.0 ng/ml in presence of 0.3mM H2O2 in analyte solution, and the detection limit was 0.2 ng/ml at three times background noise. The proposed method is economical, efficient and potentially attractive for clinical immunoassays.  相似文献   

6.
Qu F  Lu H  Yang M  Deng C 《Biosensors & bioelectronics》2011,26(12):4810-4814
A new electrochemical immunosensor for the detection of protein biomarker platelet-derived growth factor BB (PDGF-BB) was developed based on graphene oxide (GO) initiated silver enhancement. The immunosensor was fabricated based on the traditional sandwich protocol using secondary anti-PDGF-BB antibody (Ab(2)) modified GO as label. Gold electrode was first modified with self-assembled monolayer (SAM) to block the electron transfer between the electrode and K(3)Fe(CN)(6) solution. After the immobilization of primary anti-PDGF-BB antibody (Ab(1)) onto electrode via aminidation to the carboxylic group of SAM and the formation of the sandwich immuno-structure onto electrode surface, the electrode was immersed into silver enhancement solution for silver deposition. The deposited metal silver onto GO then mediated electron transfer across the SAM, producing redox current. The resulting immunosensor displays a wide range of linear response, low detection limit, good reproducibility and stability. The immunosensor was used to the detection of PDGF-BB contents in serum samples with satisfactory results.  相似文献   

7.
Wei Q  Zhao Y  Xu C  Wu D  Cai Y  He J  Li H  Du B  Yang M 《Biosensors & bioelectronics》2011,26(8):3714-3718
Nanoporous gold (NPG) film modified electrode for the construction of novel label-free electrochemical immunosensor for ultrasensitive detection of cancer biomarker prostate specific antigen (PSA) is described. Due to its high conductivity, large surface area, and good biocompatibility, NPG film modified electrode was used for the adsorption of anti-PSA antibody (Ab). The sensing signal is based on the monitoring of the electrode's current response towards K(3)Fe(CN)(6), which is extremely sensitive to the formation of immunocomplex within the nanoporous film. Under optimum conditions, the amperometric signal decreases linearly with PSA concentration (0.05-26 ng/mL), resulting in a low limit of detection (3 pg/mL). We demonstrated the application of the novel immunosensor for the detection of PSA in real sample with satisfactory results.  相似文献   

8.
The aim of the present work was to make amperometric immunosensors based on the principle of enzyme-linked immunosorbent assay (ELISA). For this purpose, screen-printed electrodes (SPEs) were fabricated using various carbon inks (commercially available inks Gwent, Acheson, Eltecks and two homemade inks PSG & PVCG) to determine the best ink in realizing immunosensors. Amperometric immunosensors made by different carbon inks were compared with standard ELISA in terms of total assay time, amount of biological materials used and sensitivity of detection. A model system containing rabbit anti-mouse immunoglobulin G (RαMIgG) as the capturing antibody, mouse IgG (MIgG) as antigen and alkaline phosphatase conjugated RαMIgG as revealing antibody was used. In these studies, 1-naphthyl phosphate was used as substrate. The experiments done include electrochemical characterization of electrodes, optimization of dilutions of antibodies, immobilization of antibody on the electrode were carried out. The minimum detection limit for the best results of MIgG determination were obtained on screen-printed electrode made by Gwent carbon ink and PSG carbon ink, with a detection limit of 1.0 and 2.0 ng/ml respectively. The time required for detection of mouse IgG was 40 min for SPEs. By using the conventional spectrophotometric method (ELISA method), the minimum detection limit for the MIgG (antigen) detection was 50 ng/ml and the time required for analysis was found to be 140 min.  相似文献   

9.
In this work, uniform and stable multi-walled carbon nanotubes (MWCT) and chemically reduced graphene (GR) composite electrode interface was fabricated by using layer-by-layer assembly method. The performances of these GR-MWCT assembled electrode interfaces were studied by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). It was demonstrated that the assembled composite film significantly improved the interfacial electron transfer rate compared with that of GR or MWCT modified electrode. Based on the GR-MWCT assembled interface, a sandwich-type electrochemical immunosensor was constructed using human IgG as a model target. In this assay, human IgG was fixed as the target antigen, the HRP-conjugated IgG as the probing antibody and hydroquinone as the electron mediator. The detection limit of the immunosensor was 0.2 ng mL(-1) (signal-to-noise ratio of 3). A good linear relationship between the current signals and the concentrations of Human IgG was achieved from 1 ng mL(-1) to 500 ng mL(-1). Moreover, this electrochemical immunosensor exhibited excellent selectivity, stability and reproducibility, and can be used to accurately detect IgG concentration in human serum samples. The results suggest that the electrochemical immunosensor based on GR-MWCT assembled composite will be promising in the point-of-care diagnostics application of clinical screening of multiple diseases.  相似文献   

10.
A novel amperometric immunosensor for the detection of the p24 antigen (p24Ag) from HIV-1 was constructed using gold nanoparticles (GNP), multi-walled carbon nanotubes (MWCNTs), and an acetone-extracted propolis film (AEP). First, amino-functionalized MWCNTs (MWCNTNH?) were prepared and dispersed in an HAuCl? solution to synthesize GNPs in situ. Next, the GNP/CNT/AEP nanocomposite was prepared by mixing an AEP solution and the GNP/CNT powder. The nanocomposite was dripped onto a gold electrode (GE), and then p24 antibody (anti-p24 Ab) was immobilized on the resulting modified gold electrode to construct the immunosensor. The assembly process was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The factors that were likely to influence the performance of the proposed immunosensor were studied in detail. Under optimal conditions, the proposed immunosensor exhibited good electrochemical sensitivity to the presence of p24 in a concentration range of 0.01 to 60.00 ng/mL, with a relatively low detection limit of 0.0064 ng/mL (S/N = 3). Moreover, the proposed immunosensor showed a rapid (≤ 18 s) and highly sensitive amperometric response (0.018 and 1.940 μA/ng/mL) to p24 with acceptable stability and reproducibility.  相似文献   

11.
A novel amperometric immunosensor for human chorionic gonadotropin (HCG) assay has been fabricated through incorporating toluidine blue (TB) and hemoglobin (Hb) on the multiwall carbon nanotube (MWNT)-chitosan (CS) modified glassy carbon electrode, followed by electrostatic adsorption of a conducting gold nanoparticles (nanogold) film as sensing interface. The MWNT-CS matrix provided a congenial microenvironment for the immobilization of biomolecules and promoted the electron transfer to enhance the sensitivity of the immunosensor. Due to the strong electrocatalytic properties of Hb and MWNT toward H(2)O(2), the Hb and MWNT significantly amplified the current signal of the antigen-antibody reaction. The immobilized toluidine blue as an electron transfer mediator exhibited excellent electrochemical redox property. After the immunosensor was incubated with HCG solution, the access of activity center of the Hb to toluidine blue was partly inhibited, which leaded to a linear decrease in the catalytic efficiency of the Hb to the oxidation of immobilized toluidine blue by H(2)O(2) over HCG concentration ranges from 0.8 to 500 mIU/mL. Under optimal condition, the detection limit for the HCG immunoassay was 0.3 mIU/mL estimated at a signal-to-noise ratio of 3. Moreover, the proposed immunosensor displayed a satisfactory stability and reproducibility.  相似文献   

12.
Sensitive electrochemical immunosensor for the detection of protein biomarker tumor necrosis factor α (TNF-α) was reported that uses ferrocene carboxylic acid (Fc) functionalized self-assembled peptide nanowire (Fc-PNW) as sensor platform and glucose oxidase (GOx) modified gold nanorod (GNR) as label. Greatly enhanced sensitivity is achieved based on a dual signal amplification strategy: first, the synthesized Fc-PNW used as the sensor platform increased the loading of primary anti-TNF-α antibody (Ab(1)) onto electrode surface due to its large surface area. At the same time, the Fc moiety on the nanowire is used as a mediator for GOx to catalyze the glucose reaction. Second, multiple GOx and secondary anti-TNF-α antibody (Ab(2)) molecules are bounded onto each GNR to increase the sensitivity of the immunosensor. After the preparation of the immunosensor based on the traditional sandwich protocol, the response of the immunosensor towards glucose was used as a signal to differentiate various concentrations of TNF-α. The resulting immunosensor has high sensitivity, wide linear range (0.005-10ng/mL) and good selectivity. This immunosensor preparation strategy is a promising platform for clinical screening of protein biomarkers.  相似文献   

13.
Impedance spectroscopy approaches combined with the immunosensor technology have been used for the determination of trace amounts of ciprofloxacin antibiotic belonging to the fluoroquinolone family. The sensor electrode was based on the immobilization of anti-ciprofloxacin antibodies by chemical binding onto a poly(pyrrole-NHS) film electrogenerated on a solid gold substrate. The electrode surface was modified by electropolymerization of pyrrole-NHS, antibody grafting and ciprofloxacin immunoreaction. The sensitive steps of surface modification, cyclic voltammetry (CV) and atomic force microscopy (AFM) imaging have been used for electrode surface characterization. The immunoreaction of ciprofloxacin on the grafted anti-ciprofloxacin antibody directly triggers a signal via impedance spectroscopy measurements which allows the detection of extremely low concentration of 10 pg/ml ciprofloxacin.  相似文献   

14.
A novel strategy for the fabrication of sensitive immunosensor to detect α-fetoprotein (AFP) in human serum has been proposed. The immunosensor was prepared by immobilizing AFP antigen onto the glassy carbon electrode (GC) modified by gold nanoparticles and carbon nanotubes doped chitosan (GNP/CNT/Ch) film. GNP/CNT hybrids were produced by one-step synthesis based on the direct redox reaction. The electrochemical properties of GNP/CNT/Ch films were characterized by impedance spectroscopy and cyclic voltammetry. It was indicated that GNP/CNT nanohybrid acted as an electron promoter and accelerated the electron transfer. Sample AFP, immobilized AFP, and alkaline phosphatase (ALP)-labeled antibody were incubated together for the determination based on a competitive immunoassay format. After the immunoassay reaction, the bound ALP label on the modified GC led to an amperometric response of 1-naphthyl phosphate (1-NP), which was changed with the different antigen concentrations in solution. Under the optimized experimental conditions, the resulting immunosensor could detect AFP in a linear range from 1 to 55 ng ml−1 with a detection limit of 0.6 ng ml−1. The proposed immunosensor, by using GNP/CNT/Ch as the immobilization matrix of AFP, offers an excellent amperometric response of ALP-anti-AFP to 1-NP. The immunosensor provided a new alternative to the application of other antigens or other bioactive molecules.  相似文献   

15.
A sensitive amperometric immunosensor for carcinoembryonic antigen (CEA) was prepared. Firstly, a porous nano-structure gold (NG) film was formed on glassy carbon electrode (GCE) by electrochemical reduction of HAuCl4 solution, then nano-Au/Chit composite was immobilized onto the electrode because of its excellent membrane-forming ability, and finally the anti-CEA was adsorbed onto the surface of the bilayer gold nanoparticles to construct an anti-CEA/nano-Au/Chit/NG/GCE immunosensor. The characteristics of the modified electrode at different stages of modification were studied by cyclic voltammetry (CV). The gold colloid, chitosan and nano-Au/Chit were characterized by transmission electron microscopy and UV–vis spectroscopy. In addition, the performances of the immunosensor were studied in detail. The resulting immunosensor offers a high-sensitivity (1310 nA/ng/ml) for the detection of CEA and has good correlation for detection of CEA in the range of 0.2 to 120.0 ng/ml with a detection limit of 0.06 ng/ml estimated at a signal-to-noise ratio of 3. The proposed method can detect the CEA through one-step immunoassay and would be valuable for clinical immunoassay.  相似文献   

16.
An electrochemical impedimetric immunosensor was developed for ultrasensitive determination of insulin-like growth factor-1 (IGF-1) based on immobilization of a specific monoclonal antibody on gold nanoparticles (GNPs) modified gold electrode. Self-assembly of colloidal gold nanoparticles on the gold electrode was conducted through the thiol groups of 1,6-hexanedithiol (HDT) monolayer as a cross linker. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the electrode surface was probed for studying the immobilization and determination processes, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interaction of antigen with grafted antibody recognition layer was carried out by soaking the modified electrode into antigen solution at 37°C for 3 h. The immunosensor showed linearity over 1.0-180.0 pg mL(-1) and the limit of detection was 0.15 pg mL(-1). The association constant between IGF-1 and immobilized antibody was calculated to be 9.17×10(11) M(-1). The proposed method is a useful tool for screening picogram amounts of IGF-1 in clinical laboratory as a diagnostic test.  相似文献   

17.
Electrocatalytic sensing of NADH using a hybrid thin film derived from multi-wall carbon nanotubes (CNTs), Nafion (Nf) polymer and electrogenerated redox mediator is described. The redox mediator was electrochemically generated by the oxidation of serotonin on the hybrid thin film modified glassy carbon electrode (GC/Nf-CNT). Controlled potential electrolysis of serotonin at 0.1 V in neutral solution results in the generation of the redox mediator 5,5'-dihydroxy-4,4'-bitryptamine (DHB) on the hybrid thin film. The electrogenerated DHB has redox active quinone-imine structure and was electrochemically characterized by studying the pH dependent redox response. DHB on the hybrid thin film exhibits reversible redox peak at -0.05 V and the formal potential shifts by -55 mV while increasing the solution pH by 1 unit. The quinone-imine structure of DHB efficiently catalyzes the oxidation of NADH with a decrease in the overpotential of about 500 mV compared to the unmodified electrode. The CNTs of the hybrid thin film facilitates the mediated electrocatalytic oxidation of NADH. The hybrid thin film modified electrode exhibits stable amperometric response and it linearly responds to NADH (0.5-400 microM). This hybrid thin film modified electrode could detect NADH as low as 0.1 microM at -0.05 V with a sensitivity of 11.1 nA/microM in physiological pH.  相似文献   

18.
A "dual-layer membrane cloaking" (DLMC) method was developed to construct disposable electrochemical immunosensor for direct determination of serum sample. Mouse IgG (MIgG) molecules were firstly immobilized on a substrate. After the formation of a didodecyldimethylammonium bromide (DDAB) membrane on the MIgG modified substrate, an additional bovine serum albumin (BSA) thin layer was formed to build a BSA/DDAB dual-layer membrane (DLM). When alkaline phosphatase conjugated anti-mouse IgG antibodies (anti-MIgG-ALP) in human serum were incubated on the substrate, anti-MIgG-ALP was recognized specifically by the immobilized MIgG while all nonspecifically adsorbed proteins were selectively removed together with BSA/DDAB DLM by 5% Triton X-100 (v/v) before final measurements. The BSA/DDAB DLM was characterized and optimized by surface plasmon resonance (SPR) technique, and further employed in a disposable immunoassay based on an ITO chip. Under optimal conditions, MIgG in human serum was directly detected in the range of 2.0-18.0 ng mL(-1) without dilution or separation. A limit of detection as low as 0.922 ng mL(-1) (6.15 pM) was obtained. The proposed DLMC method can efficiently prevent the penetration of matrix proteins through single cloaking membrane and completely eliminate nonspecific adsorption. It has great potential in providing a versatile way for direct determination of serum sample with ultra-sensitivity.  相似文献   

19.
A novel label-free voltammetric immunosensor for sensitive detection of β-lactoglobulin using graphene modified screen printed electrodes has been developed. The derivatization of the graphene electrode surface was achieved by electrochemical reduction of in situ generated 4-nitrophenyl diazonium cations in aqueous acidic solution, followed by electrochemical reduction of the terminal nitro groups to amines. The electrochemical modification protocol was optimized in order to generate monolayer of nitrophenyl groups on the graphene surface without complete passivation of the electrode. Unlike the reported method for graphene functionalization, we demonstrated here the ability of the electrografting of aryl diazonium salt to attach an organic film to the graphene surface in a controlled manner by choosing the suitable grafting protocol. Next, the amine groups on the graphene surface were activated using glutaraldehyde and used for the covalent immobilization of β-lactoglobulin antibodies. Cyclic and differential pulse voltammetry carried out in an aqueous solution containing [Fe(CN)(6)](3-/4-) redox pair have been used for the immunosensor characterization. The results demonstrated that the DPV reduction peak current of [Fe(CN)(6)](3-/4-) decreased linearly with increasing the concentration of β-lactoglobulin due to the formation of antibody-antigen complex on the modified electrode surface. The immunosensor obtained using this novel approach enabled a detection limit of 0.85pgmL(-1) and a dynamic range from 1pgmL(-1) to 100ngmL(-1) of β-lactoglobulin in PBS buffer. In addition, the immunosensor evaluated in different samples including cake, cheese snacks, a sweet biscuit, showing excellent correlation with the results obtained from commercially enzyme-linked immunosorbent assay (ELISA) method.  相似文献   

20.
Mao K  Wu D  Li Y  Ma H  Ni Z  Yu H  Luo C  Wei Q  Du B 《Analytical biochemistry》2012,422(1):22-27
For the specificity of prostate cancer markers, prostate specific antigen (PSA) has been widely used in prostate cancer screening, diagnosis, and treatment after monitoring. In normal male serum, PSA can only be detected in traces of 0-4 ng mL(-1). In this paper, we constructed an electrochemical immunosensor for PSA detection using a nanocomposite film of graphene sheets-methylene blue-chitosan (GS-MB-CS) as electrode material. The nanocomposite film showed high binding affinity to the electrode and was used to immobilize the antibody of PSA. The modification procedure was monitored by cyclic voltammetry (CV). An amperometric biosensor was easily developed based on the response of peak current to the capture of PSA induced by specific antigen-antibody reactions. Under optimum conditions, the amperometric signal decreased linearly with PSA concentration (0.05-5.00 ng mL(-1)). A low limit of detection (13 pg mL(-1)) and a high selectivity are obtained. Moreover, the prepared immunosensor was applied for the analysis of PSA in serum samples with satisfactory results. The proposed method may have a promising future in biochemical assays for high selectivity, good reproducibility, and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号