首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA modification accompanying immunoglobulin gene expression was examined in various Abelson murine leukemia virus (A-MuLV)-transformed cell lines, which were able to differentiate from the mu- to mu+ stage or to undergo an isotype switch during in vitro culture. The C mu genes were relatively demethylated in the A-MuLV-transformed cell lines examined irrespective of whether or not the C mu genes were expressed. Normal IgM-bearing B cells, as well as a T cell line, also showed a similar DNA methylation pattern and the C mu genes were relatively demethylated. In one of the mu+ clones, however, the expressed C mu gene was heavily methylated. The DNA methylation pattern did not change and remained hypermethylated before and after gamma 2b expression in the two cell lines which underwent class switch to gamma 2b during in vitro culture, suggesting that expression of the gamma 2b gene was not accompanied by demethylation of the C gamma 2b gene. Taken together, these results indicate that DNA demethylation within and around the CH gene may not be necessary for its expression.  相似文献   

2.
Nerve damage can lead to movement and sensory dysfunction, with high morbidity and disability rates causing severe burdens on patients, families, and society. DNA methylation is a kind of epigenetics, and a great number of previous studies have demonstrated that DNA methylation plays an important role in the process of nerve regeneration and remodeling. However, compared with the central nervous system, the peripheral nervous system shows stronger recovery after injury, which is related to the complex microenvironment and epigenetic changes occurring at the site of injury. Therefore, what common epigenetic changes between the central and peripheral nervous systems remain to be elucidated. We first screened differential methylation genes after spinal cord injury and sciatic nerve injury using whole-genome bisulfite sequencing and methylated DNA immunoprecipitation sequencing, respectively. Subsequently, a total of 16 genes had the same epigenetic changes after spinal cord injury and sciatic nerve injury. The Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed to identify the critical biological processes and pathways. Furthermore, a protein−protein interaction network analysis indicated that Dnm3, Ntrk3, Smurf1, Dpysl2, Kalrn, Shank1, Dlg2, Arsb, Reln, Bmp5, Numbl, Prickle2, Map6, and Htr7 were the core genes. These outcomes may provide novel insights into the molecular mechanism of the subacute phase of nerve injury. These verified genes can offer potential diagnostic and therapeutic targets for nerve injury.  相似文献   

3.
4.
DNA methylation and gene expression.   总被引:46,自引:1,他引:45       下载免费PDF全文
  相似文献   

5.
6.
Steroid receptors in the stromal cells of endometrium and its disease counterpart tissue endometriosis play critical physiologic roles. We found that mRNA and protein levels of estrogen receptor 2 (ESR2) were strikingly higher, whereas levels of estrogen receptor 1 (ESR1), total progesterone receptor (PGR), and progesterone receptor B (PGR B) were significantly lower in endometriotic versus endometrial stromal cells. Because ESR2 displayed the most striking levels of differential expression between endometriotic and endometrial cells, and the mechanisms for this difference are unknown, we tested the hypothesis that alteration in DNA methylation is a mechanism responsible for severely increased ESR2 mRNA levels in endometriotic cells. We identified a CpG island occupying the promoter region (-197/+359) of the ESR2 gene. Bisulfite sequencing of this region showed significantly higher methylation in primary endometrial cells (n = 8 subjects) versus endometriotic cells (n = 8 subjects). The demethylating agent 5-aza-2'-deoxycytidine significantly increased ESR2 mRNA levels in endometrial cells. Mechanistically, we employed serial deletion mutants of the ESR2 promoter fused to the luciferase reporter gene and transiently transfected into both endometriotic and endometrial cells. We demonstrated that the critical region (-197/+372) that confers promoter activity also bears the CpG island, and the activity of the ESR2 promoter was strongly inactivated by in vitro methylation. Taken together, methylation of a CpG island at the ESR2 promoter region is a primary mechanism responsible for differential expression of ESR2 in endometriosis and endometrium. These findings may be applied to a number of areas ranging from diagnosis to the treatment of endometriosis.  相似文献   

7.
8.
9.
10.
11.
Falek PR  Ben-Sasson SZ  Ariel M 《Cytokine》2000,12(3):198-206
In order to determine the possible role of DNA methylation as a regulatory mechanism for the restricted pattern of lymphokine production among differentiated Th(1)and Th(2)cells, we examined the extent of methylation of the interferon gamma (IFN-gamma) and the interleukin 4 (IL-4) genes in fresh activated murine Th(0), Th(1)and Th(2)cells, unstimulated naive T cells, B cells, bone marrow derived non-B non-T cells, thymocytes and liver. All of the CpG dinucleotides examined in the IL-4 and the IFN-gamma genes, were fully methylated over the body of the gene in all of the examined cells. However, analysis of the promoter regions of these genes revealed a different pattern. While the IL-4 promoter is fully methylated in all of the examined cells, two adjacent CpG dinucleotides near the initiation point of the IFN-gamma gene were unmethylated in all T cells, including 17-day-old fetal thymocytes. In contrast, B cells, bone marrow non-B non-T cells and liver cells displayed a full methylated profile of the IFNgamma promoter. These results suggest that the mutually exclusive pattern of IFNgamma and IL-4 production in Th(1)and Th(2)cells is not regulated by differential demethylation of these two genes.  相似文献   

12.
DNA methylation affecting the expression of murine leukemia proviruses.   总被引:38,自引:18,他引:20       下载免费PDF全文
The endogenous, vertically transmitted proviral DNAs of the ecotropic murine leukemia virus in AKR embryo fibroblasts were found to be hypermethylated relative to exogenous AKR murine leukemia virus proviral DNAs acquired by infection of the same cells. The hypermethylated state of the endogenous AKR murine leukemia virus proviruses in these cells correlated with the failure to express AKR murine leukemia virus and the lack of infectivity of cellular DNA. Induction of the endogenous AKR murine leukemia virus proviruses with the methylation antagonist 5-azacytidine suggested a causal connection between DNA methylation and provirus expression. Also found to be relatively hypermethylated and noninfectious were three of six Moloney murine leukemia virus proviral DNAs in an unusual clone of infected rat cells. Recombinant DNA clones which derived from a methylated, noninfectious Moloney provirus of this cell line were found to be highly active upon transfection, suggesting that a potentially active proviral genome can be rendered inactive by cellular DNA methylation. In contrast, in vitro methylation with the bacterial methylases MHpaII and MHhaI only slightly reduced the infectivity of the biologically active cloned proviral DNA. Recombinant DNA clones which derived from a second Moloney provirus of this cell line were noninfectious. An in vitro recombination method was utilized in mapping studies to show that this lack of infectivity was governed by mechanisms other than methylation.  相似文献   

13.
14.
Expression of ovine interferon-tau (oIFNtau) genes, essential for the maternal recognition of pregnancy in ruminant ungulates, is restricted to the trophoblast and is not detected in any other cell types or tissues. Substantial secretion of oIFNtau starts on day 12-13 of pregnancy (day 0 = day of estrus), reaches the highest on day 16-17, and then declines rapidly. Ovine IFNtau mRNA, on the other hand, reaches the highest level on day 14 of pregnancy, 2-3 days before peak production of the protein. In this study, day 14 and 17 conceptuses treated with 5-aza-2'-deoxycytidine, an inhibitor of DNA methylation, were cultured in vitro and only day 17, not day 14, conceptuses resulted in upregulation of oIFNtau gene expression. To gain insight into the molecular mechanism of oIFNtau gene downregulation, the methylation status within 1 kb of the 5'-flanking region of oIFNtau-o10 gene was investigated: CpG dinucleotides of this gene in day 14 ovine conceptuses were hypomethylated compared to day 20 conceptuses or other tissues. In vitro methylation of oIFNtau-o10-reporter constructs caused suppression of reporter activity in transient transfections. Cotransfection of methyl-CpG-binding protein (MeCP2) with the reporter construct elicited further suppression of the reporter activity. In electrophoretic mobility shift assay (EMSA), patterns of shifted bands did not show much difference between methylated and unmethylated probes in distal regions, but exhibited differences in the proximal region of upstream sequences of the oIFNtau gene. These results provide evidence that changes in the degree of DNA methylation could be one of the major mechanisms leading to downregulation of the oIFNtau-o10 gene during early gestation, and possibly its silencing in nonconceptus tissues.  相似文献   

15.
16.
17.
18.
《Epigenetics》2013,8(7):619-626
Biological responses to environmental stress, including nutrient limitation are mediated in part by epigenetic modifications including DNA methylation. Insulin-like growth factor II (Igf2) and H19 are subject to epigenetic modifications leading to genomic imprinting. The present study was designed to test the effect of maternal low protein diet on the Igf2/H19 locus in offspring. Pregnant Sprague-Dawley rats were fed diets containing 180 g/kg casein (control) or 90 g/kg (LP) casein with either 1 mg/kg (LP) or 3 mg/kg folic acid (LPF). LP diet increased Igf2 and H19 gene expression in the liver of day 0 male offspring and the addition of folic acid reduced the mRNA level in LPF rats to that of the control group. DNA methylation in Imprinting Control Region (ICR) of Igf2/H19 locus increased significantly following maternal LP diet but rats fed the LPF diet did not exhibit the hypermethylation. The Differential Methylation Region 2 (DMR2) did not show any change in methylation in either LP or LPF rats. The expression of Dnmt1 and Dnmt3a, the members of DNA methyltransferase family, and methyl CpG-binding domain 2 (Mbd2) was significantly increased following the maternal LP diet but did not differ between the control and LPF group. There is a strong correlation between methylation of ICR with the expression of Igf2 and H19. These results suggested that maternal exposure to a low protein diet and folic acid during gestation alters gene expression of Igf2 and H19 in the liver by regulating the DNA methylation of these genes. The DNA methyltransferase machinery may be involved into the programming of imprinted genes through the imprinted control region.  相似文献   

19.
DNA methylation and the regulation of aldolase B gene expression   总被引:4,自引:0,他引:4  
DNA methylation was studied as a potential factor for the regulation of tissue-specific and developmentally specific expression of the rat aldolase B gene. We examined cytosine methylation in the HpaII and HhaI recognition sequences in the aldolase B gene in aldolase expressing and nonexpressing tissues and cells. Out of the 15 methyl-sensitive restriction sites examined, the sites in the 3'-half and 3'-flanking regions were found to be heavily methylated in all the tissues or cells, regardless of the level of aldolase B gene expression. However, the methylation pattern in the region immediately upstream and in the 5'-half of the gene exhibited tissue-specificity: the site located about 0.13 kb upstream of the cap site (just next to the CCAAT box), and the sites in the first intron (intron 1) were heavily methylated in nonexpressing cells and tissues (ascites hepatoma AH130 and brain), whereas those in an expressing tissue (liver) were considerably less methylated. These results suggest that cytosine methylation at the specific sites in the 5'-flanking and 5'-half regions of the gene is associated with repression of the gene activity. However, the gene is still substantially methylated in the fetal liver on day 16 of gestation, when it is in a committed state for rapid activation in the period immediately afterwards (Numazaki et al. (1984) Eur. J. Biochem. 152, 165-170). This suggests that demethylation of the methylated cytosine residues in the specific gene region is not necessarily required before activation of the gene during development, but it may occur along with or after the activation.  相似文献   

20.
Yao C  Li H  Shen X  He Z  He L  Guo Z 《PloS one》2012,7(1):e29686

Background

Hundreds of genes with differential DNA methylation of promoters have been identified for various cancers. However, the reproducibility of differential DNA methylation discoveries for cancer and the relationship between DNA methylation and aberrant gene expression have not been systematically analysed.

Methodology/Principal Findings

Using array data for seven types of cancers, we first evaluated the effects of experimental batches on differential DNA methylation detection. Second, we compared the directions of DNA methylation changes detected from different datasets for the same cancer. Third, we evaluated the concordance between methylation and gene expression changes. Finally, we compared DNA methylation changes in different cancers. For a given cancer, the directions of methylation and expression changes detected from different datasets, excluding potential batch effects, were highly consistent. In different cancers, DNA hypermethylation was highly inversely correlated with the down-regulation of gene expression, whereas hypomethylation was only weakly correlated with the up-regulation of genes. Finally, we found that genes commonly hypomethylated in different cancers primarily performed functions associated with chronic inflammation, such as ‘keratinization’, ‘chemotaxis’ and ‘immune response’.

Conclusions

Batch effects could greatly affect the discovery of DNA methylation biomarkers. For a particular cancer, both differential DNA methylation and gene expression can be reproducibly detected from different studies with no batch effects. While DNA hypermethylation is significantly linked to gene down-regulation, hypomethylation is only weakly correlated with gene up-regulation and is likely to be linked to chronic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号