首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The genes coding for NADH dehydrogenase subunit 5 (nad5) in mitochondria of the higher plants Oenothera and Arabidopsis are split into five exons that are located in three distant genomic regions. These encode exons a + b, c and d + e, respectively. Maturation of the mRNAs requires two trans splicing events to integrate exon c of only 22 nucleotides. Both trans splicing reactions involve mitochondrial group II intron sequences that allow base pairings in the interrupted domain IV, demonstrating the flexibility of intron structures. The observation of fragmented intron sequences in plant mitochondria suggests that trans splicing is more widespread than previously assumed. RNA editing by C to U alterations in both Oenothera and Arabidopsis open reading frames improves the evolutionary conservation of the encoded polypeptides. Three C to U RNA editing events were observed in intron sequences.  相似文献   

9.
10.
11.
The 3' regions of several group II introns within the mitochondrial genes nad1 and nad7 show unexpected sequence divergence among flowering plants, and the core domains 5 and 6 are predicted to have weaker helical structure than those in self-splicing group II introns. To assess whether RNA editing improves helical stability by the conversion of A-C mispairs to A-U pairs, we sequenced RT-PCR amplification products derived from excised intron RNAs or partially spliced precursors. Only in some cases was editing observed to strengthen the predicted helices. Moreover, the editing status within nad1 intron 1 and nad7 intron 4 was seen to differ among plant species, so that homologous intron sequences shared lower similarity at the RNA level than at the DNA level. Plant-specific variation was also seen in the length of the linker joining domains 5 and 6 of nad7 intron 3; it ranged from 4 nt in wheat to 11 nt in soybean, in contrast to the 2-4 nt length typical of classical group II introns. However, this intron is excised as a lariat structure with a domain 6 branchpoint adenosine. Our observations suggest that the core structures and sequences of these plant mitochondrial introns are subject to less stringent evolutionary constraints than conventional group II introns.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号