首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Six genes are vertebrate homologues of the homeobox-containing gene sine oculis, which plays an essential role in controlling Drosophila compound eye development. Here we report the identification and expression patterns of all three subfamilies of Xenopus Six genes. Two Six2 subfamily genes (Six1, Six2) showed very similar expression patterns in cranial ganglia, otic placodes and the eyes. Non-neural expression of Six1 and Six2 was observed with mesodermal head mesenchyme, somites and their derivatives, the muscle anlagen of the embryonic trunk. In addition, Six2 expression was also found with mesenchyme associated with the developing stomach and pronephros. Expression of Six3 subfamily genes (Six3.1, Six3.2, Six6.1, and Six6.2) was restricted to the developing head, where expression was especially observed in derivatives of the forebrain (eyes, optic stalks, the hypothalamus and pituitary gland). Interestingly, expression of all Six3 subfamily members but Six6.2 was also found with the pineal gland primordium and the tegmentum. Expression of Six4 subfamily genes (Six4.1, Six4.2) was present in the developing visceral arches, placodal derivatives (otic vesicle, olfactory system), head mesenchyme and the eye. The observed dynamic expression patterns are largely conserved between lower and higher vertebrates and imply important roles of Six family genes not only in eye formation and myogenesis, but also in the development of the gut, the kidney and of placode-derived structures.  相似文献   

2.
Expressions of Raldh3 and Raldh4 during zebrafish early development   总被引:1,自引:0,他引:1  
Retinoic acid (RA) plays crucial roles in vertebrate embryogenesis. Four retinal dehydrogenases (Raldhs) that are responsible for RA synthesis have been characterized in mammals. However, only Raldh2 ortholog is identified in zebrafish. Here, we report the identification of raldh3 and raldh4 genes in zebrafish. The predicted proteins encoded by zebrafish raldh3 and raldh4 exhibit 70.0% and 73.5% amino acid identities with mouse Raldh3 and Raldh4, respectively. RT-PCR analyses reveal that both raldh3 and raldh4 mRNAs are present in early development. However, whole mount in situ hybridization shows that raldh3 mRNA is first expressed in the developing eye region of zebrafish embryos at 10-somite stage. At 24 hpf (hours post fertilization), raldh3 mRNA is expressed in the ventral retina of eye. At 36 hpf, the mRNA is also expressed in otic vesicle in addition to ventral retina, and it maintains its expression pattern till 2 dpf (days post fertilization). At 3 dpf, raldh3 mRNA becomes very weak in ventral retina but is present in otic vesicle at a high level. At 5 dpf and 7 dpf, raldh3 is no longer expressed in eyes but is expressed in otic vesicles at a very low level. raldh4 mRNA is initially detected in developing liver and intestine regions at 2 dpf embryos. Its expression level becomes very high in these two regions of embryos from 3 dpf to 5 dpf. Analysis on the sections of 5 dpf embryos reveals that raldh4 is expressed in the epithelium of intestine. At 7 dpf, raldh4 mRNA is only weakly expressed in the epithelium of intestinal bulb.  相似文献   

3.
Vertebrate tinman homologues and cardiac differentiation.   总被引:4,自引:0,他引:4  
In Drosophila, the homeobox gene tinman is required for specification of dorsal vessel and a number of mesodermal subtypes. Six tinman homologues have now been found in diverse vertebrate species: Nkx2-3, 2-5, 2-6, 2-7, 2-8 and 2-9. Of these, Nkx2-5 appears to be the mostly highly conserved among species, in terms of both primary protein sequence and mRNA expression pattern. Of the others, some have been found as yet only in a single species. Although expression patterns of vertebrate tinman homologues indicate that they may play a role in the specification of several mesodermal or endodermal tissues, to date most attention have been focussed on their role in cardiac development. Results of these studies indicate that, as for Drosophila tinman, vertebrate tinman homologues may be required for heart formation, but may not be sufficient. Studies in Drosophila are defining other pathways which are required in concert with tinman for dorsal vessel formation. Circumstantial evidence suggests that similar pathways may be operative in vertebrate heart formation. This review summarizes recent advances in our understanding of vertebrate tinman homologues and interacting genetic pathways.  相似文献   

4.
In vertebrates, cranial placodes form crucial parts of the sensory nervous system in the head. All cranial placodes arise from a common territory, the preplacodal region, and are identified by the expression of Six1/4 and Eya1/2 genes, which control different aspects of sensory development in invertebrates as well as vertebrates. While So and Eya can induce ectopic eyes in Drosophila, the ability of their vertebrate homologues to induce placodes in non-placodal ectoderm has not been explored. Here we show that Six1 and Eya2 are involved in ectodermal patterning and cooperate to induce preplacodal gene expression, while repressing neural plate and neural crest fates. However, they are not sufficient to induce ectopic sensory placodes in future epidermis. Activation of Six1 target genes is required for expression of preplacodal genes, for normal placode morphology and for placode-specific Pax protein expression. These findings suggest that unlike in the fly where the Pax6 homologue Eyeless acts upstream of Six and Eya, the regulatory relationships between these genes are reversed in early vertebrate placode development.  相似文献   

5.
6.
7.
8.
9.
Three homologues of the Drosophilaregion-specific homeotic gene spalt (sal) have been isolated in zebrafish, sall1a, sall1b and sall3. Phylogenetic analysis of these genes against known salDNA sequences showed zebrafish sall1aand sall1b to be orthologous to other vertebrate sal-1 genes and zebrafish sall3to be orthologous to other vertebrate sal-3 genes, except Xenopus sall3. Phylogenetic reconstruction suggests that zebrafish sall1a and sall1bresulted from a gene duplication event occurring prior to the divergence of the ray-finned and lobe-finned fish lineages. Analysis of the expression pattern of the zebrafish sal genes shows that sall1a and sall3 share expression domains with both orthologous and non-orthologous vertebrate sal genes. Both are expressed in various regions of the CNS, including in primary motor neurons. Outside of the CNS, sall1a expression is observed in the otic vesicle (ear), heart and in a discrete region of the pronephric ducts. These analyses indicate that orthologies between zebrafish sal genes and other vertebrate sal genes do not imply equivalence of expression pattern and, therefore, that biological functions are not entirely conserved. However we suggest that, like other vertebrate sal genes, zebrafish sal genes have a role in neural development. Also, expression of zebrafish sall1a in the otic vesicle, heart sac and the pronephric ducts of zebrafish embryos is possibly consistent with some of the abnormalities seen in Sall1-deficient mice and in Townes-Brocks Syndrome, a human disorder which is caused by mutations in the human spalt gene SALL1.  相似文献   

10.
11.
The establishment of retinal identity and the subsequent patterning of the optic vesicle are the key steps in early vertebrate eye development. To date little is known about the nature and interaction of the genes controlling these steps. So far few genes have been identified that, when over-expressed, can initiate ectopic eye formation. Of note is Six3, which is expressed exclusively in the anterior neural plate. However, 'loss of function' analysis has not been reported. Using medaka fish, we show that vertebrate Six3 is necessary for patterning of the anterior neuroectoderm including the retina anlage. Inactivation of Six3 function by morpholino knock-down results in the lack of forebrain and eyes. Corroborated by gain-of-function experiments, graded interference reveals an additional role of Six3 in the proximodistal patterning of the optic vesicle. During both processes of vertebrate eye formation, Six3 cooperates with Pax6.  相似文献   

12.
13.
We have isolated an amphioxus T-box gene that is orthologous to the two vertebrate genes, Tbx1 and Tbx10, and examined its expression pattern during embryonic and early larval development. AmphiTbx1/10 is first expressed in branchial arch endoderm and mesoderm of developing neurulae, and in a bilateral, segmented pattern in the ventral half of newly formed somites. Branchial expression is restricted to the first three branchial arches, and disappears completely by 4 days post fertilization. Ventral somitic expression is restricted to the first 10–12 somites, and is not observed in early larvae except in the most ventral mesoderm of the first three branchial arches. No expression can be detected by 4 days post fertilization. Integrating functional, phylogenetic and expression data from amphioxus and a variety of vertebrate model organisms, we have reconstructed the early evolutionary history of the Tbx1/10 subfamily of genes within the chordate lineage. We conclude that Tbx1/10-mediated branchial arch endoderm and mesoderm patterning functions predated the origin of neural crest, and that ventral somite specification functions predated the origin of vertebrate sclerotome, but that Tbx1 was later co-opted during the evolution of developmental programs regulating branchial neural crest and sclerotome migration.Edited by M. Akam  相似文献   

14.
15.
Many Drosophila genes have now been identified with substantial sequence similarity to vertebrate protooncogenes and growth factors. Some of these have been isolated directly by cross-hybridization with vertebrate probes and some have been recognized in the sequences of genes cloned because of their intiguing mutant phenotypes. An example of a gene isolated for its interesting development functions but with homology to a vertebrate growth factor is the Drosophila decapentaplegic gene (dpp). An example of a Drosophila gene isolated by virtue of its sequence conservation is the vgr/60A gene. Both dpp and vgr/60A are members of the transforming growth factor-beta family and are most similar to the human bone morphogenetic proteins. The regulation of the dpp gene by several different groups of pattern formation genes including the dorsal/ventral group, the terminal group, the segment polarity genes, and the homeotic genes indicates that many events in embryogenesis require the cell to cell communication mediated by the secreted dpp protein. The temporal and spatial pattern of vgr/60A expression differs from that of dpp indicating that it may be regulated by different pattern information genes. The experimental advantages of the Drosophila system should permit a better understanding of the importance of growth factor homologs in specific developmental events, aid in establishing the functional interactions between these regulatory molecules, and identify new genes that are important for the biological functions of growth factors. It is likely that some of the newly identified genes will have vertebrate homologs and the analysis of these may be helpful in studies on vertebrate development and tumor biology.  相似文献   

16.
The vertebrate Six genes are homologues of the Drosophila homeobox gene sine oculis (so), which is essential for development of the entire visual system. Here we describe two new Six genes in Drosophila, D-Six3 and D-Six4, which encode proteins with strongest similarity to vertebrate Six3 and Six4, respectively. In addition, we report the partial sequences of 12 Six gene homologues from several lower vertebrates and show that the class of Six proteins can be subdivided into three major families, each including one Drosophila member. Similar to so, both D-Six3 and D-Six4 are initially expressed at the blastoderm stage in narrow regions of the prospective head and during later stages in specific groups of head midline neurectodermal cells. D-Six3 may also be essential for development of the clypeolabrum and several head sensory organs. Thus, the major function of the ancestral Six gene probably involved specification of neural structures in the cephalic region.  相似文献   

17.
Expression of vnd in ventral, ind in intermediate, and msh in dorsal columns of fly neurectoderm, and of homologous gene families in corresponding domains of vertebrate neurectoderm, suggests that elements of dorsoventral neural patterning have been evolutionarily conserved. However, upstream signaling pathways regulating this columnar gene expression pattern appear to have diverged significantly throughout evolution. In addition, while recent loss-of-function studies in flies and mice indicate that these three genes may have a conserved role in regional specification, there is no obvious conservation of the particular cell fates deriving from corresponding domains. The three-column expression pattern may thus represent a developmental mechanism that is more resistant to evolutionary changes than genetic events upstream or downstream of it.  相似文献   

18.
19.
This study describes the isolation and characterization of zebrafish homologues of the mammalian Pax3 and Pax7 genes. The proteins encoded by both zebrafish genes are highly conserved (>83%) relative to the known mammalian sequences. Also the neural expression patterns during embryogenesis are very similar to the murine homologues. However, observed differences in neural crest and mesodermal expression relative to mammals could reflect some functional divergence in the development of these tissues. For the zebrafish Pax7 protein we report the first full-length amino acid sequences in vertebrates and show the existence of three additional isoforms which have truncations in the homeodomain and/or the C-terminal region. These novel variants provide evidence for additional isoform diversity of vertebrate Pax proteins.  相似文献   

20.
Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号