首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harpin(Ea), an active component in Messenger, was originally isolated from the bacterial plant pathogen Erwinia amylovora based on its ability to elicit a hypersensitive response (HR). This bacterial pathogen causes "fire blight", a disease in apples and other members of the Rosaceae. Harpin(Ea) also induces resistance in a variety of plants against a wide array of pathogens. The objective of this investigation was to determine indications of resistance induction to Botrytis cinerea in the plants treated with the formulated Harpin(Ea) protein. This pathogenic agent is responsible for important economic losses in the cultivation of both greenhouse and field grown tomatoes. Plants with and without Messenger applications were inoculated with Botrytis cinerea in the same way. In addition, some plants with and without Messenger applications were not inoculated. Inoculated plants were symptomatologically checked for local and systemic symptoms. Evaluations of the number of tomatoes produced and their growth were also carried out. The results obtained demonstrate that there were active defence systems in the plant, producing a reduction in the damage caused by the pathogenic agent Botrytis cinerea. A greater growth also took place in the fruit obtained. These results show that the formulated Harpin(Ea) protein could reduce the use of chemical agents and be a new tool to serve as the basis for an Integrated Pest Management system.  相似文献   

2.
3.
The defence responses of potato against Phytophthora infestans were studied using the highly resistant Sarpo Mira cultivar. The effects of plant integrity, meristems, and roots on the hypersensitive response (HR), plant resistance, and the regulation of PR genes were analysed. Sarpo Mira shoots and roots grafted with the susceptible Bintje cultivar as well as non-grafted different parts of Sarpo Mira plants were inoculated with P. infestans. The progress of the infection and the number of HR lesions were monitored, and the regulation of PR genes was compared in detached and attached leaves. Additionally, the antimicrobial activity of plant extracts was assessed. The presented data show that roots are needed to achieve full pathogen resistance, that the removal of meristems in detached leaves inhibits the formation of HR lesions, that PR genes are differentially regulated in detached leaves compared with leaves of whole plants, and that antimicrobial compounds accumulate in leaves and roots of Sarpo Mira plants challenged with P. infestans. While meristems are necessary for the formation of HR lesions, the roots of Sarpo Mira plants participate in the production of defence-associated compounds that increase systemic resistance. Based on the literature and on the presented results, a model is proposed for mechanisms involved in Sarpo Mira resistance that may apply to other resistant potato cultivars.  相似文献   

4.
5.
6.
One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively) compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC-TOF-MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism.  相似文献   

7.
Phytophthora infestans, the agent of potato and tomato late blight disease, produces a 10-kD extracellular protein, INF1 elicitin. INF1 induces a hypersensitive response in a restricted number of plants, particularly those of the genus Nicotiana. In virulence assays with different P. infestans isolates, five Nicotiana species displayed resistance responses. In all of the interactions, after inoculation with P. infestans zoospores, penetration of an epidermal cell was observed, followed by localized necrosis typical of a hypersensitive response. To determine whether INF1 functions as an avirulence factor in these interactions, we adopted a gene-silencing strategy to inhibit INF1 production. Several transformants deficient in inf1 mRNA and INF1 protein were obtained. These strains remained pathogenic on host plants. However, in contrast to the wild-type and control transformant strains, INF1-deficient strains induced disease lesions when inoculated on N. benthamiana. These results demonstrate that the elicitin INF1 functions as an avirulence factor in the interaction between N. benthamiana and P. infestans.  相似文献   

8.
Non-host resistance is the most general form of disease resistance in plants because it is effective against most phytopathogens. The importance of hypersensitive responses (HRs) in non-host resistance of Nicotiana species to the oomycete Phytophthora is clear. INF1 elicitin, an elicitor obtained from the late-blight pathogen Phytophthora infestans , is sufficient to induce a typical HR in Nicotiana species. The molecular mechanisms that underlie the non-host resistance component of plant defence responses have been investigated using differential-display polymerase chain reaction (PCR) in a model HR system between INF1 elicitin and tobacco BY-2 cells. Differential-display PCR has revealed that Cdc27B is down-regulated in tobacco BY-2 cells after treatment with INF1 elicitin. Cdc27B is one of 13 essential components of the anaphase-promoting complex or cyclosome (APC/C)-type E3 ubiquitin ligase complex in yeast. This APC/C-type E3 ubiquitin ligase complex regulates G2-to-M phase transition of the cell cycle by proteolytic degradation. In this study, we investigated the roles of this gene, NbCdc27B , in plant defence responses using virus-induced gene silencing. Suppression of NbCdc27B in Nicotiana benthamiana plants induced defence responses and a gain of resistance to Colletotrichum lagenarium fungus. Elicitin-induced hypersensitive cell death (HCD) was inhibited mildly in plants silenced with tobacco rattle virus::Cdc27B. Cdc27B could manage the signalling pathways of plant defence responses as a negative regulator without HCD.  相似文献   

9.
Yu D  Liu Y  Fan B  Klessig DF  Chen Z 《Plant physiology》1997,115(2):343-349
Potato (Solanum tuberosum) plants contain a high basal level of salicylic acid (SA), the role of which in disease resistance is currently unclear. Here we report that, in spite of a drastic reduction in total SA levels in transgenic potato plants expressing the bacterial salicylate hydroxylase gene (nahG), there was no significant increase in disease severity when infected by Phytophthora infestans. Therefore, the high basal level of SA does not lead to constitutive resistance in healthy potato plants. However, in contrast to control plants, arachidonic acid failed to induce systematic acquired resistance (SAR) in nahG plants against P. infestans, indicating an essential role of SA in potato SAR. These results suggest that in potato the development of SAR against P. infestans may involve increased sensitivity of the plant to SA.  相似文献   

10.
A bioassay using Phytophthora infestans was developed to determine whether inhibitory proteins are induced in pathogen-inoculated plants. Using this bioassay, AP24, a 24-kilodalton protein causing lysis of sporangia and growth inhibition of P. infestans, was purified from tobacco plants inoculated with tobacco mosaic virus. Analysis of the N-terminal amino acid sequence identified AP24 as the thaumatin-like protein osmotin II. The sequence was also similar to NP24, the salt-induced protein from tomato. Subsequently, we purified a protein from tomato plants inoculated with P. infestans that had inhibitory activities identical to those of the tobacco AP24. The N-terminal amino acid sequence of this protein was also similar to those of osmotin and NP24. In general, both the tobacco and tomato AP24 caused lysis of sporangia at concentrations greater than 40 nanomolar and severely inhibited hyphal growth at concentrations greater than 400 nanomolar. Because both proteins were induced by pathogen inoculation, we discussed the possible involvement of these proteins as a plant defense mechanism.  相似文献   

11.
The estimation of field resistance of potato cultivars to Phytophthora infestans are usually carried out in expensive and time consuming field experiments over several years. Therefore, a procedure is required for the fast and objective determination of qualitative and quantitative field resistance of new cultivars. This study correlated level of field resistance to P. infestans in leaf discs or leaflets of various potato cultivars to characteristic changes of Chlorophyll-a fluorescence (CF) parameters F m (maximal fluorescence) and F v (maximal variable fluorescence). Two different inocula, both containing virulence genes 1-11 were tested. The results were achieved when leaf discs from greenhouse or field plants were each inoculated with a P. infestans spore suspension and incubated for 24 h. In field measurements, comparable results were obtained 48 h after inoculation. The estimation of field resistance by measuring specific CF parameters could be an economical and rapid procedure to reduce or substitute visual lesion assessment for determining cultivar field resistance.  相似文献   

12.
Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to their particular physiological characteristics, no efficient treatments against diseases caused by these microorganisms are presently available. To develop such treatments, it appears essential to dissect the molecular mechanisms that determine the interaction between Phytophthora species and host plants. Available data are scarce, and genomic approaches were mainly developed for the two species, Phytophthora infestans and Phytophthora sojae. However, these two species are exceptions from, rather than representative species for, the genus. P. infestans is a foliar pathogen, and P. sojae infects a narrow range of host plants, while the majority of Phytophthora species are quite unselective, root-infecting pathogens. To represent this majority, Phytophthora parasitica emerges as a model for the genus, and genomic resources for analyzing its interaction with plants are developing. The aim of this review is to assemble current knowledge on cytological and molecular processes that are underlying plant-pathogen interactions involving Phytophthora species and in particular P. parasitica, and to place them into the context of a hypothetical scheme of co-evolution between the pathogen and the host.  相似文献   

13.
THE REACTION OF VIRUS-INFECTED POTATO PLANTS TO PHYTOPHTHORA INFESTANS   总被引:2,自引:0,他引:2  
The growth of Phytophthora infestans was retarded on leaves of potato plants that had been artificially inoculated with virus X or with virus Y.
Using different virus strains and potato varieties, the effect of virus infection on blight development was found to be greater, the more severe the systemic virus symptoms exhibited on the infected leaves before P. infestans inoculation.
The development of the fungus was never increased by virus infection.
The reduced blight development on virus-infected leaves is partially caused by an increase of resistance to infection. It is also suggested that virus infection alters the nutritional status of leaves to one less favourable for the development of P. infestans.  相似文献   

14.
15.
Phytophthora infestans (Mont.) de Bary is infamous as the causal agent of the late blight epidemic contributing to the Irish potato famine of the mid 19th century and remains agriculture's most destructive disease as new mutations and migrations confound control measures. In efforts to develop resistant varieties, a somatic hybrid (the Wisconsin J series) between potato (Solanum tuberosum) and a wild relative (Solanum bulbocastanum) has been found to convey durable resistance against the pathogen. We screened the total protein (100 microg ml(-1)) of somatic hybrid varieties J138, J138A12, J101K12, J103K12, and J101K9 for in vitro spore germination inhibition of P. infestans. Since J138 exhibited maximum inhibition at 150 microg ml(-1) in comparison to other varieties, we purified a 40 kD protein from J138 tubers by assaying its ability to inhibit spore germination in P. infestans spores. The highly purified protein was able to inhibit P. infestans spore germination by 70% at the 2.5 microg ml(-1) concentration. The N-terminal sequence of this protein was found to have exact amino acid homology to patatin, the major storage protein of potato tubers. The inhibitory protein has the same molecular weight as patatin and cross-reacts with patatin antibodies. The infection of J138 plants with spores of P. infestans under greenhouse conditions showed that patatin is expressed in stem tissue 72 h after the plant is inoculated with field isolates of P. infestans (US8). In this communication, we report the purification, characterization and antifungal activity against spores of P. infestans of patatin-J from potato tubers.  相似文献   

16.
There is emerging evidence that the proteolytic machinery of plants plays important roles in defense against pathogens. The oomycete pathogen Phytophthora infestans, the agent of the devastating late blight disease of tomato (Lycopersicon esculentum) and potato (Solanum tuberosum), has evolved an arsenal of protease inhibitors to overcome the action of host proteases. Previously, we described a family of 14 Kazal-like extracellular serine protease inhibitors from P. infestans. Among these, EPI1 and EPI10 bind and inhibit the pathogenesis-related (PR) P69B subtilisin-like serine protease of tomato. Here, we describe EPIC1 to EPIC4, a new family of P. infestans secreted proteins with similarity to cystatin-like protease inhibitor domains. Among these, the epiC1 and epiC2 genes lacked orthologs in Phytophthora sojae and Phytophthora ramorum, were relatively fast-evolving within P. infestans, and were up-regulated during infection of tomato, suggesting a role during P. infestans-host interactions. Biochemical functional analyses revealed that EPIC2B interacts with and inhibits a novel papain-like extracellular cysteine protease, termed Phytophthora Inhibited Protease 1 (PIP1). Characterization of PIP1 revealed that it is a PR protein closely related to Rcr3, a tomato apoplastic cysteine protease that functions in fungal resistance. Altogether, this and earlier studies suggest that interplay between host proteases of diverse catalytic families and pathogen inhibitors is a general defense-counterdefense process in plant-pathogen interactions.  相似文献   

17.
Modulation of plant resistance to diseases by water-soluble chitosan   总被引:2,自引:0,他引:2  
Low-molecular-weight water-soluble chitosan with a molecular weight of 5 kDa obtained after enzymatic hydrolysis of native crab chitosan was shown to display an elicitor activity by inducing the local and systemic resistance of Solanumi tuberosum potato and Lycopesicon esculentum tomato to Phytophthora infestans and nematodes, respectively. Chitosan induced the accumulation of phytoalexins in tissues of host plants, decreased the total content and changed the composition of free sterols producing adverse effects on infesters, activated chitinases, beta-glucanases, and lipoxygenases, and stimulated the generation of reactive oxygen species. The activation of protective mechanisms in plant tissues inhibited the growth of taxonomically different pathogens (parasitic fungus Phytophthora infestans and root knot nematode Meloidogyne incognita).  相似文献   

18.
In breeding for resistance to late blight, ( Phytophthora infestans Mont. de Bary), an economically important disease affecting potatoes, the search for new sources of durable resistance includes the non-host wild Solanum species. The aim of this work was to evaluate the resistance to P. infestans in the somatic hybrids between S. nigrum L. and diploid potato clone ZEL-1136. Sixteen somatic hybrids, their fusion parents, and three standard potato cultivars were screened for resistance to P. infestans in two types of tests-on whole plants and detached leaves-with two highly aggressive and virulent isolates of P. infestans, US8 and MP322. In the whole plant assay, the foliage of the somatic hybrids showed no symptoms of infection, while the foliage of the potato fusion parent and the standard cultivars was infected with P. infestans. In the detached leaflet assay, the breaking-down of resistance of the S. nigrum L. parent and the variable response of individual hybrid clones were noted. Nine S. nigrum L. (+) ZEL-1136 hybrids showed a resistance that was significantly higher than that of S. nigrum, while six clones expressed a resistance to P. infestans similar to that of S. nigrum. The results confirm the effective transfer of late blight resistance of S. nigrum into its somatic hybrids with potato.  相似文献   

19.
While the mechanisms underlying quantitative resistance of plants to pathogens are still not fully elucidated, the Pathogen-Associated Molecular Patterns (PAMPs)-triggered response model suggests that such resistance depends on a dynamic interplay between the plant and the pathogen. In this model, the pathogens themselves or elicitors they produce would induce general defense pathways, which in turn limit pathogen growth and host colonisation. It therefore suggests that quantitative resistance is directly linked to a common set of general host defense mechanisms, but experimental evidence is still inconclusive. We tested the PAMP-triggered model using two pathogens (Pectobacterium atrosepticum and Phytophthora infestans) differing by their infectious processes and five potato cultivars spanning a range of resistance levels to each pathogen. Phenylalanine ammonia-lyase (PAL) activity, used as a defense marker, and accumulation of phenolics were measured in tuber slices challenged with lipopolysaccharides from P. atrosepticum or a concentrated culture filtrate from P. infestans. PAL activity increased following treatment with the filtrate but not with lipopolysaccharides, and varied among cultivars. It was positively related to tuber resistance to P. atrosepticum, but negatively related to tuber resistance to P. infestans. It was also positively related to the accumulation of total phenolics. Chlorogenic acid, the main phenolic accumulated, inhibited growth of both pathogens in vitro, showing that PAL induction caused active defense against each of them. Tuber slices in which PAL activity had been induced before inoculation showed increased resistance to P. atrosepticum, but not to P. infestans. Our results show that inducing a general defense mechanism does not necessarily result in quantitative resistance. As such, they invalidate the hypothesis that the PAMP-triggered model alone can explain quantitative resistance. We thus designed a more complex model integrating physiological host response and a key pathogen life history trait, pathogen growth, to explain the differences between the two pathosystems.  相似文献   

20.
Animal and plant eukaryotic pathogens, such as the human malaria parasite Plasmodium falciparum and the potato late blight agent Phytophthora infestans, are widely divergent eukaryotic microbes. Yet they both produce secretory virulence and pathogenic proteins that alter host cell functions. In P. falciparum, export of parasite proteins to the host erythrocyte is mediated by leader sequences shown to contain a host-targeting (HT) motif centered on an RxLx (E, D, or Q) core: this motif appears to signify a major pathogenic export pathway with hundreds of putative effectors. Here we show that a secretory protein of P. infestans, which is perceived by plant disease resistance proteins and induces hypersensitive plant cell death, contains a leader sequence that is equivalent to the Plasmodium HT-leader in its ability to export fusion of green fluorescent protein (GFP) from the P. falciparum parasite to the host erythrocyte. This export is dependent on an RxLR sequence conserved in P. infestans leaders, as well as in leaders of all ten secretory oomycete proteins shown to function inside plant cells. The RxLR motif is also detected in hundreds of secretory proteins of P. infestans, Phytophthora sojae, and Phytophthora ramorum and has high value in predicting host-targeted leaders. A consensus motif further reveals E/D residues enriched within approximately 25 amino acids downstream of the RxLR, which are also needed for export. Together the data suggest that in these plant pathogenic oomycetes, a consensus HT motif may reside in an extended sequence of approximately 25-30 amino acids, rather than in a short linear sequence. Evidence is presented that although the consensus is much shorter in P. falciparum, information sufficient for vacuolar export is contained in a region of approximately 30 amino acids, which includes sequences flanking the HT core. Finally, positional conservation between Phytophthora RxLR and P. falciparum RxLx (E, D, Q) is consistent with the idea that the context of their presentation is constrained. These studies provide the first evidence to our knowledge that eukaryotic microbes share equivalent pathogenic HT signals and thus conserved mechanisms to access host cells across plant and animal kingdoms that may present unique targets for prophylaxis across divergent pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号