首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potato virus X (PVX) isolated from the potato leaf and tuber samples which were collected from various fields in Damavand and Ardabil. The initial isolations of the virus were made from potato by mechanical inoculation on Gomphrena globosa L. and Chenopodium spp. that produce local lesion, and then it causes mosaic on Nicotiana spp. and Datura stramonium L. An isolate of the virus inoculated to Nicotiana glutinosa L. and it was maintained throughout the work. Sap from infected N. glutinosa was ineffective after dilution to 10-6, 10 minutes at 70 degrees and 10 weeks at room temperature. The virus was readily purified from infected leaves and the best protocol was Moreira & Jones 1980 than the other 2 methods of Fribourg 1975 and Shepard & Shalla 1972. Antisera were prepared against native, degraded proteins and micro precipitin test showed that both antisera had a 1/512 titer. Precipitin lines with D - Protein antiserum was better of the native protein antiserum in agar double diffusion test than treated with SDS. The isolate of the virus was not transmitted by none of 2 species of Cuscuta but transmitted from infected leaves to healthy plants with sap inoculation without using Carburandum. This isolate showed positive reaction with gamaglubulin in kate received from CIP centre.  相似文献   

2.
Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum)   总被引:1,自引:0,他引:1  
Pepino mosaic virus (PepMV), a previously undescribed virus, was found in fields of pepino (Solanum muricatum) in the Canete valley in coastal Peru. PepMV was transmitted by inoculation of sap to 32 species from three families out of 47 species from nine families tested. It caused a yellow mosaic in young leaves of pepino and either a mild mosaic or symptomless infection in 12 wild potato species, five potato cultivars and potato clone USDA 41956 but S. stoloniferum and potato cultivars Merpata and Revolucion reacted with severe systemic necrotic symptoms. The virus was transmitted by plant contact but not by Myzus persicae. It was best propagated and assayed in Nicotiana glutinosa. Sap from infected N. glutinosa was infective after dilution to 10-1 but not 10-6, after 10 min at 65°C but not 70°C and after 3 months at 20°C. PepMV had filamentous particles with a normal length of 508 nm; the ends of some seemed damaged. Ultra-thin sections of infected leaves of N. glutinosa revealed many inclusions containing arrays of virus-like particles some of which were banded or whorled; small aggregates of virus-like particles were also common. The virus was purified by extracting sap from infected leaves in a solution containing 0·065 M disodium tetraborate, 0·435 M boric acid, 0·2% ascorbic acid and 0·2% sodium sulphite at pH 7·8, adding silver nitrate solution to the extract, and precipitating the virus with polyethylene glycol followed by two cycles of differential centrifugation. Particles of PepMV normally yielded two proteins with molecular weights of 26 600 and 23 200, but virus obtained from infective sap aged overnight yielded only the smaller protein suggesting that it was a product of degradation of the larger one. The virus is serologically related to two potexviruses, narcissus mosaic and cactus X and its properties are typical of the potexvirus group.  相似文献   

3.
A granulosis virus infecting the potato tuber moth, Phthorimaea operculella, has been identified, isolated and purified from diseased potato tuber moth larvae collected from potato fields in the highland basin Qa al-Boun of the Republic of Yemen. The granulosis virus was propagated by feeding potato tuber moth larvae with potatoes treated with a concentration of one granulosis virus-infected fourth instar larva to 5l of water (corresponding to an occlusion body (OB) concentration of 2 106 OB ml-1). Restriction enzyme analysis of viral DNA revealed that the isolated virus seemed to correspond to an isolate from the Lima region of Peru. A median LC 50 value of 7.3 104 OB ml-1 was calculated for a purified virus preparation. Different preparations of the granulosis virus were investigated for their persistence in the field on tubers and leaves. A purified virus preparation (PoGV) applied to potato tubers and exposed in the open had a half-life of 1.3 days. On leaves, the activity of granulosis virus spray deposits of an unpurified virus preparation (PoGV I) and of a glycerine-formulated preparation (PoGV II) also declined with exposure time. Mortalities of potato tuber moth larvae of 43% for PoGV I and 49% for PoGV II were recorded when first instar larvae were fed with potato leaves collected 2 days after treatment. After 8 days, 25.8% of the larvae had died from PoGV I treatment and 19.4% from PoGV II. Neither preparation displayed any effect 17 days after application.  相似文献   

4.
A stock of potato virus C derived from Edgecote Purple potatoes in 1945 was not then transmitted by aphids, although more than 2000 aphids were used in conditions optimal for transmitting the serologically related potato virus Y. This stock of virus C has been propagated continuously since, by manual inoculation in a series of Nicotiana glutinosa and N. tabacum , and in 1955 it was transmitted by the aphid Myzus persicae (Sulz.): about one in twenty of the aphids transmitted it compared with one in two for potato virus Y.
Virus C derived from the Edgecote Purple potatoes in 1955 was not transmitted by aphids; both stocks of virus C produced only local lesions in Majestic potato leaves, and gave similar symptoms in tobacco.
When inoculated to Majestic potatoes and then returned to tobacco plants, potato virus C usually ceased to be aphid transmitted and did not recover this property in any of the subsequent subcultures.
Transmission from stock by aphids did not isolate a strain of virus C which was any more readily transmitted by aphids, indeed, for the first two or three subcultures, aphids usually transmitted more readily from plants inoculated manually. But the few isolates which remained aphid transmissible, after a second passage through potato, were rather readily transmitted.
These results suggest that the ability of a virus to be aphid transmitted is, at least in part, determined by the host plant in which it is multiplying, but the nature of the changes which determine this ability are unknown.  相似文献   

5.
During two growing seasons in years of 2003 and 2004 potato and tobacco of virus infected plants were collected from fields in Tehran (Damavand) and Mazandaran (Behshahr) provinces. Serological methods of TAS-ELISA and DIBA were performed by using PVY antiserum (DSMZ - Plant Virus Collection; Germany) but only PVY was detected. The strain of samples was determined by using MAb of potato virus Y (AS-0403/1; DSMZ; Germany). The molecular weight of the virus coat protein was approximately 34 kDa in SDS-PAGE and Western blotting. Total RNA was extracted for RT-PCR. Immunocapture RT-PCR and RT-PCR products were 974 bp by using specific primers of PVY. IC-RT-PCR has given the best results.  相似文献   

6.
Three mechanically transmissible viruses were isolated from a diseased Solanum jasminoides plant obtained from India. One is a strain of potato virus Y , which in some potato varieties produces symptoms resembling those caused by potato virus C , but unlike potato virus C it is readily transmitted by Myzus persicae. The second, named tobacco wilt virus, is also transmitted by M. persicae but much less readily, whereas the third, named datura necrosis virus, is not. All three have a wide host range, but neither tobacco wilt nor datura necrosis viruses infects potato plants. All three have long flexuous particles and similar general properties.
Simultaneous infection with datura necrosis virus usually decreases the concentration reached by potato virus Y in tobacco plants but not in Nicotiana glutinosa.  相似文献   

7.
Hypochoeris mosaic virus (HMV) is common in Hypochoeris radicata (‘cat's ear’) in western Canada. It infected 10 of 53 mechanically inoculated species in five of twelve families, but was not transmitted by aphids or through seed or soil. Sap from infected Nicotiana clevelandii was sometimes infective after dilution to 10-1 and occasionally 102, after 10 min at 45 but not 50°C, and after 1 but not 2 days at 20°C. Infectivity of crude nucleic acid extracts from infected leaves was rapidly abolished by RNase but not by DNase. Host sap contained very few rod-shaped particles or particle fragments mostly 21.0–22.5 nm in diameter, and up to 420 nm long but with predominant lengths of 120–140 and 240–260 nm. Many rods in purified virus preparations were less than 240 nm long, and the majority were c. 140 nm or shorter. The particles had a helical substructure with a pitch of 2.58 nm and contained a single type of protein of estimated mol. wt 24.5 × 103. HMV showed no serological relationship to eight morphologically similar viruses (beet necrotic yellow vein, broad bean necrosis, barley stripe mosaic, peanut clump, potato mop-top, Nicotiana velutina mosaic, wheat soil-borne mosaic and defective strains of tobacco mosaic). It is probably a hitherto undescribed tobamovirus.  相似文献   

8.
57 native potato tuber samples collected from different potato growing region of Iran, planted on single rows in Karaj College experimental station. Plant samples of each single row plus 9.25 Fresh foliage samples collected from fields under new introduced cultivars were tested for potato virus (PVM) infection during growing season. Also 78 weeds and field crops belonging to Solonacae and Leguminosae from or neighboring to potato field were tested. Results indicated that PVM was not found on any plant other than potatoes. PVM was detected on 16 samples of 57 old vars, Virus was not seen in any samples collected from fields under new varieties. Results show that PVM is limiting in this crop. PVM detecting is difficult using assay hosts. Best test plants were French bean var Red kidney, Showing pinpoint necrotic LL, also Datura metel and Nicotiana debneyi are useful for virus detection showing chlorotic local lesion. Also microprecipition and gel diffusion test can be used for virus detection but Elisa was the best method. PVM infected plant showed 11-19.5 percent yield decrease in 3 cultivars tested.  相似文献   

9.
Potato mop-top virus (PMTV; genus Pomovirus; family Virgaviridae) is transmitted by the soil-borne Spongospora subterranea f.sp. subterranea, a protoctist that causes powdery scab on potato. PMTV is distributed widely in the potato growing areas in South and North America, Japan and northwestern Europe. This article reviews the current knowledge on detection, distribution and control of PMTV with focus on the Baltic Sea region. Since the 1980s, PMTV has caused great economic losses to potato production in the Nordic countries (Norway, Sweden, Denmark and Finland), but its occurrence in other countries of the Baltic Sea region remained unknown. To fill this knowledge gap, harmonised sampling and virus detection procedures including bioassays and serological and molecular methods were employed by 21 research institutions to detect PMTV in potato tubers and soil samples in 2005–2008. Potato growing areas were widely contaminated with PMTV in the Nordic countries. Only the main seed potato production area in northern Sweden and the High Grade seed potato production zone in Finland were negative for PMTV. Intensive and systematic surveys in Poland in 2004–2008 found no evidence of PMTV, except a single PMTV-infected tuber detected in 2008. Surveys in the Baltic countries (Lithuania, Latvia and Estonia) and northwestern Russia (Leningrad province) were negative for PMTV, except infection of minitubers in a screenhouse in Latvia in 2005. Varying percentages of tubers expressing spraing symptoms in Sweden, Norway, Denmark and Poland were infected with Tobacco rattle virus, and bioassays indicated similar results for Russia. Incidence of symptomless infections with PMTV was high in tubers of many potato cultivars. Here, we discuss the contrasting patterns of distribution of PMTV in the Baltic Sea region, factors playing a role in dispersal and establishment of PMTV in new fields and means for controlling PMTV and its spread to new areas. We emphasise the use of the current virus-specific methods for the detection of PMTV in symptomless potato tubers and the high risks of disseminating PMTV to new fields and areas in viruliferous resting spores of S. subterranea in the soil adhering to seed tubers. PMTV-resistant potato cultivars will provide the only sustainable means for preventing yield losses in the infested fields and the prospects of resistance breeding are summarised.  相似文献   

10.
Tobacco viruses transmitted by green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), cause severe disease in flue‐cured tobacco, Nicotiana tabacum L. (Solanaceae), in China and throughout the world. Field experiments were conducted in 2016 and 2017 in Longyan City, Fujian Province, China, to determine whether M. persicae and aphid‐transmitted virus diseases are affected by intercropping of oilseed rape, Brassica napus L. (Brassicaceae), in tobacco fields. The results showed that, compared with those in monocultured fields, the densities of M. persicae and winged aphids in intercropped fields significantly decreased in both 2016 and 2017. In particular, the appearance of winged aphids was delayed by ca. 7 days. Moreover, the densities of Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae), a parasitoid of the aphid, significantly increased in 2016 and 2017. Accordingly, the incidence rates of aphid‐transmitted virus diseases (those caused by the cucumber mosaic virus, potato virus Y, and tobacco etch virus) significantly decreased in the intercropped fields in 2016 and 2017. Tobacco yields and monetary value significantly increased in 2016 (by 10–25 and 14–29%, respectively) and 2017 (by 17–22 and 22–34%, respectively). Consequently, our results suggest that intercropping oilseed rape in tobacco fields is a good approach to regulating and controlling aphids and tobacco mosaic viruses, for example potyvirus, and this intercropping can help control aphid‐transmitted virus diseases in tobacco.  相似文献   

11.
In plant pathosystems involving insect vectors, disease spread, incidence, and severity often depend on the density of the vector population and its rate of infectivity with the disease pathogen. The potato psyllid, Bactericera cockerelli (Sulc), has recently been associated with zebra chip (ZC), an emerging and economically important disease of potato in the United States, Mexico, Central America, and New Zealand. "Candidatus Liberibacter solanacearum," a previously undescribed species of liberibacter has been linked to the disease and is transmitted to potato by B. cockerelli. Experiments were conducted under laboratory and field conditions to determine the impact of B. cockerelli density on ZC incidence, potato yield, and tuber processing quality. Insect densities ranging from one to 25 liberibacter-infective psyllids per plant were used during the experiments. Results showed that a single adult potato psyllid was capable of inoculating liberibacter to potato and causing ZC disease after a 72-h inoculation access period and was as damaging as 25 psyllids per plant. In addition, ZC-diseased plants showed a sharp reduction in tuber yield but the disease response was independent of the density of psyllids. Furthermore, both glucose and sucrose were found to have highly elevated concentrations in ZC-diseased potato tubers compared with noninfected ones and psyllid density did not vary the response. The high reducing sugar concentrations found in ZC-infected potato tubers are believed to be responsible for browning and reduced quality in processed ZC-infected tubers. This information could help ZC-affected potato producers in making effective management decisions for this serious disease.  相似文献   

12.
Stems of potato plants (Solanum tuberosum L. cv. Dianella) were immersed in solutions containing water (control), sucrose, glucose, paclobutrazol, and gibberellic acid. The effects of these treatments on the ethylene release, levels of endogenous gibberellins, glucose, sucrose, and starch were correlated with tuberization of nodal cuttings, excised from potato stems. Paclobutrazol and sucrose improved the percent of tuberization and/or increased tuber weight. In contrast, GA3 inhibited tuber formation compared with the control. The level of endogenous free GAs was negatively correlated with percent tuberization. However, the level of conjugated GAs was positively correlated with both percent tuberization and tuber weight. The effect of sucrose on potato tuber induction in relation to the possible role of sucrose in GA-conjugate formation is discussed.  相似文献   

13.
Lilac chlorotic leafspot virus (LCLV), a hitherto undescribed virus, was isolated from three of 65 lilacs (Syringa vulgaris) with chlorotic leafspotting symptoms growing in S.E. England. The virus was transmitted readily by sap-inoculation to 21 of 52 species from eight of 20 families, but it was not seed-borne in four hosts or transmitted in the semi-persistent manner by any of four aphid species. The virus was moderately stable in vitro; sap from Chenopodium quinoa was infective after 10 min at 60 but not 65 oC, after 8–16 days at 20 oC or 25–30 wk at 2 oC, and after dilution to 10-3 but not 10-4. Up to 180 mg of purified virus per kg leaf tissue were obtained from C. quinoa by clarification of buffered leaf extracts with 8% (v/v) n-butanol, followed by one cycle of differential centrifugation and molecular permeation chromatography on controlled pore glass beads (700 Å, 120–200 mesh). LCLV has fragile flexuous filamentous particles which, when intact, mostly measured c. 12-5 times 1500–1600 nm; the helical substructure (pitch c. 3–7 nm) was clearly visible on some particles mounted in uranyl acetate. The particles sedimented as a single component (sedimentation coefficient 96 S; buoyant density 1–302 g cm-3) and contained c. 5% nucleic acid and a single polypeptide of mol. wt 27 times 103. Although these properties place LCLV in the closterovirus group, the virus showed no serological relationship to any of six closteroviruses (beet yellows, beet yellow stunt, carnation necrotic fleck, apple chlorotic leafspot, apple stem grooving and potato virus T) and differed from other recognised or possible members of this group in host range and/or symptoms induced in indicator species. The infrequent occurrence of LCLV in lilac in S.E. England indicates that the virus could probably be eradicated by selecting only virus-free plant material for propagation.  相似文献   

14.
Intensified antiphytoviral activity of 2,4-dioxohexahydro-l,3,5-triazine by combination with guanidines Combined application of the antiphytoviral compound 2,4-dioxohexahydro-l,3,5 triazine (DHT) and different guanidines (GDs) that were either unsubstituted or substituted only by low-molecular substituents reduced the concentration of potato virus χ (PVX) in leaves or Nicotiana tabacum L. cv. Samsun much more than application of either agent alone. In secondarily PVX-infected leaves, the activity of 2,4-dioxohexahydro- 1,3,5-triazine was increased by a larger number of GDs and to a greater degree than in inoculated ones. The activities of GDs against tobacco mosaic virus (TMV) in Nicotiana tabacum L. cv. Samsun as well as against brome grass mosaic virus (BRV) in Hordeum vulgare L. cv Vogelsanger Gold were only insignificantly increased by combination with DHT. On the other hand, in experiments with so-called identical potato eye cuttings, in which several eye cuttings were obtained from each potato tuber, one serving as a control and the others being treated with DHT, N-cyano guanidine or a combination of these substances, the number of cuttings with symptoms of potato leaf-roll virus (PLRV) could be much more greatly reduced by the combination than by the individual preparations. The number of cuttings with symptoms of potato virus Y and potato virus A was significantly reduced by treatment with the combined preparation, but not by treatment with DHT or N-cyano guanidine alone. Additional investigation with N-cyano-GD, and, beside this, with acetyl-GD and N N′ N triamino-GD indicated a close correlation between the diminution of numbers of potato eye cuttings with virus symptoms and the increase in tuber weight. The greater the reduction in the number of cuttings showing virus symptoms, the greater was the increase in tuber weight. These relationships were observed even in those cases where controls had been treated with ammonium nitrate solutions whose N contents equivalent to the N contents of the preparations. The observed effects of the preparations therefore are not attributable to N-fertilizing effects.  相似文献   

15.
A virus (isolate SYM) obtained from spinach plants in England with a severe yellow mottle disease induced symptoms resembling those of tobacco rattle virus (TRV) in several indicator species but caused systemic necrosis in Chenopodium amaranticolor and C. quinoa. It was transmitted to bait plants grown in soil containing the nematode Trichodorus primitivus. Purified virus preparations contained rod-shaped particles that were predominantly of four modal lengths: 188 nm (L particles), 101 nm (S particles), 57 nm and 48 nm (together called VS particles), containing RNA with mol. wts of 2.4, 1.5, 0.7 and 0.6 million, respectively. L particles (s°20= 300 S) and S particles (230 S) greatly outnumbered VS particles (c. 150 S). All particles contained a single polypeptide species with estimated mol wt of 24 700, slightly larger than those previously reported for tobraviruses. Purified L particles were infective but both L and S particles were needed to induce the production of virus nucleoprotein particles. VS particles were not infective and apparently had no qualitative or quantitative effect on infection by L or by L plus S particles. S particles carried determinants for serological specificity and ability to invade C. amaranticolor systemically. Isolate SYM produced pseudo-recombinants with isolate PRN of TRV. Also, isolates CAM, OR and PRN of TRV, and isolate SYM, were found to be distantly related by three kinds of serological test. No relationship was detected between these isolates and pea early-browning virus in gel-diffusion precipitin tests or electron microscope serological tests, but a distant relationship between isolate SYM and pea early-browning virus was found by micro-precipitin tests. Isolate SYM therefore has closer affinities with TRV than with pea early-browning virus and is considered to be a distinctive strain of TRV.  相似文献   

16.
广东省烟草花叶病病原病毒的鉴定   总被引:2,自引:0,他引:2  
烟草花叶病是广东省产烟区的主要病害之一。我们在南雄等八个县进行调查,1983年至1984年的一般发病率为2~20%。根据血清学反应、病毒粒体形态、鉴别寄主反应及寄主范围、媒介昆虫种类、物理性质、交互保护反应等各项检验结果,鉴定广东省烟草花叶病病原是:三个黄瓜花叶病毒可能株系(普通株系CMV-C,烟草坏死株系CMV-TN,烟草黄色坏死株系(CMV-TYN),烟草花叶病毒(TMV),马铃薯病毒Y(PVY),烟草脉带花叶病毒(TVBMV)和烟草褪绿斑驳病毒(TCMV)(暂定)。  相似文献   

17.
The potato tuberworm, Phthorimaea operculella (Zeller), is a major pest of potatoes in fields and traditional storage. A common method of nonrefrigerated storage is to pile potatoes in straw-covered heaps in the field. Tubers may be stored up to 3-4 mo in this manner, until the next harvest. We studied the dynamics of potato tuber moth infestation associated with such field storage in a 12-wk experiment in Israel. We set up six potato heaps, and sampled them for potato tuber moth at different locations at weekly intervals. Potato tuber moth infestation was significantly higher at the perimeter of the heaps than at their center, but it did not differ between bottom, mid-height, and top of the heaps. The proportion of potato tuber moth-infested potato tubers increased from 10 to 65% over the course of the experiment, and the mean number of potato tuber moth larvae per tuber increased from 0.25 to 2.50. Potato tuberworm populations increased sharply after 3, 6, and 9 wk of study, possibly corresponding to successive generations that developed within the heaps. This interpretation is supported by calculations of potato tuberworm generation length based on temperature data. Catches in pheromone traps that were placed near the heaps were not correlated (spatially and temporally) with potato tuberworm densities within heaps, hinting that migration among heaps did not considerably affect within-heap population dynamics. Potato tuberworm levels were not correlated with ambient temperatures, perhaps because of the warm, humid, and constant microclimate within the heaps. We discuss the significance of our findings for control efforts of the potato tuberworm.  相似文献   

18.
A virus obtained from sweet potatoes in Kenya, Uganda and Tanzania was transmitted by inoculation of sap and by whiteflies (Bemisia tabaci). It infected forty-five of 119 plant species in fourteen of thirty-six plant families. It was propagated in Nicotiana glutinosa and N. tabacum, in which diagnostic symptoms of vein clearing, leaf curling and distortion developed. Cheno-podium quinoa was a good local lesion host. Different seedling lines of sweet potato differed greatly in their susceptibility to infection and in symptoms produced; some developed leaf mottling and were stunted, some were symptomless, and some appeared immune. The virus was transmitted by dodder (Cuscuta campestris) but not by aphids, or through seed of Ipomoea nil or N. clevelandii. Sweet potato sap contained strong inhibitors of infection, and a low concentration of virus. Virus-free cuttings of sweet potato were obtained by thermotherapy (4–5 wk at 35 °C), or by meristem-tip culture. The virus remained infective in sap of N. tabacum after dilution to 10-3, or after 10 min at 55 °C (but not 60 °C), 3 but not 7 days at 18 °C, or 42 but not 49 days at 2 °C. Infectivity was abolished by sonication or u.v. irradiation, by 2% formaldehyde or 2% tri-sodium orthophosphate, and was greatly decreased by 20 % CHC13 or 20 % ether. Purified virus preparations were obtained from N. tabacum by clarifying phosphate buffer extracts with n-butanol, virus precipitation with polyethylene glycol, and differential centrifugation. The virus sedimented as one band in density gradients, and produced a single sedimenting boundary in analytical centrifugation (s°20, w = 1555)- It contained one polypeptide species of mol wt 37700, and preliminary digestion experiments suggested a single-stranded RNA. Antisera prepared against the virus reacted specifically in precipitin tube tests with titres of 1/16384, but no serological relationships could be found between the virus and fourteen viruses of the potato virus Y group. Electron micrographs showed straight, filamentous particles c. 950 nm long when mounted in MgCla, but 800–900 nra long in EDTA. The present cryptogram is: (R/i):*/*:E/E:S/Al. This virus is probably the same as Sheffield's virus B.  相似文献   

19.
Host range and some properties of potato mop-top virus   总被引:2,自引:0,他引:2  
Potato mop-top virus (PMTV) was transmitted by inoculation of sap to twenty-six species in the Solanaceae or Chenopodiaceae and to Tetragonia expansa; species in eleven other plant families were not infected. The virus was cultured in inoculated leaves of Nicotiana tabacum cv. Xanthi-nc or in N. debneyi. Diagnostic local lesions were produced in Chenopodium amaranticolor. In winter, ten solanaceous species were slowly invaded systemically but the first leaves infected were those immediately above inoculated leaves. When transmitted to Arran Pilot potato by the vector Spongospora subterranea, PMTV induced all the main types of shoot and tuber symptoms found in naturally infected plants. Isolates of PMTV from different sources differed considerably in virulence. PMTV-containing tobacco sap lost infectivity when heated for 10 min at 80 °C, diluted to 10-4, or stored at 20 °C for 14 weeks. Infectivity was partially stabilized by 0·02% sodium azide. When sap was centrifuged for 10 min at 8000 g, infectivity was mainly in the sediment. Infective sap contained straight rod-shaped particles about 20 nm wide, with lengths up to 900 nm and crossbands at intervals of 2·5 nm. Many of the particles were aggregated side-to-side, and the ends of most seemed damaged. The slight infectivity of phenol-treated leaf extracts was abolished by pancreatic ribonuclease. The present cryptogram of PMTV is R/*:*/*:E/E:S/Fu.  相似文献   

20.
Potato virus Y (PVY, genus Potyvirus, family Potyviridae) is transmitted non‐persistently by aphids. It causes major losses in potato production (Solanum tuberosum), especially following seed tuber‐borne infection of plants. To limit the risk of PVY infection, seed potato production is located preferably in regions where vector pressure is low. The northern‐most high‐grade seed potato production area (HG zone) of Europe is in Finland. The aim of this study was to determine the incidence of aphid species with documented ability to transmit PVY and to use a modelling approach to determine their relative importance as vectors of PVY in the HG zone of Finland. Winged aphids were caught from six to seven potato fields in each of three growing seasons (2007–09) using yellow pan traps that were examined twice a week. Identification of more than 30 000 individuals indicated that 37% of the aphids belonged to nine species reported to transmit PVY. Incidence of PVY in seed lots was low (0–5.6%) and the seasonal increase of PVY incidence was also low in the potato crops. No potato‐colonising aphids were found on the plants in any of the years. The seasonal increase in PVY incidence was modelled using aphid counts in traps, the relative vector efficiencies of the aphids, virus resistance of cultivars, and the initial infection rate of the seed tubers as explanatory variables in generalised linear mixed modelling. Akaike's information criterion was employed to find the best set of explanatory variables for PVY in harvested tubers. Results of this modelling approach showed that the incidence of seed‐borne PVY infection and the early‐season vector flights are the most important factors contributing to the incidence of PVY in the yield. Compared to models with data from all potential vector species, models containing data from Aphis fabae only showed a better model fit with regard to the incidence of PVY in the harvested tubers. The explanatory power of the models was lost when A. fabae was omitted from the vector data, suggesting that other species play a negligible role as vectors of PVY in the HG zone of Finland. Results can be used to devise appropriate strategies for enhanced control of PVY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号