首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytochrome P450 monooxygenases (P450s) in the sacred lotus (Nelumbo nucifera) genome have been identified and named according to systematic P450 nomenclatures. Comparisons of these sequences with those in the papaya and grape CYPomes have indicated that gene blooms exist in the CYP89, CYP94, CYP96 and CYP714 families and that less dramatic expansions exist in the CYP71 and CYP72 families. Expansions in the CYP94 and CYP96 families may be associated with generation of the extremely hydrophobic leaf surfaces associated with the “lotus effect” in this water-adapted species, since these families are known to hydroxylate fatty acids and alkanes in the wax biosynthetic pathways of other plant species. Evolution of the CYP719 and CYP80 families may be associated with production of a number of benzylisoquinoline and aporphine alkaloids. Structures for anonaine and roemerine, two of the most abundant aporphine alkaloids in lotus leaves and seeds, contain methylenedioxy bridges that are known to be generated by members of the CYP719 family. With only one CYP719A22 gene existing in the lotus genome, it is likely that it is involved in making aporphine alkaloids. The fact that CYP719 has not previously been seen in angiosperm phylogeny below the order of Ranunculales suggests that its presence in lotus (in the Proteales) presents an evolutionary terminus prior to its loss in more recent eudicot species. With several CYP80 family genes existing in the lotus genome, there are multiple candidates for those involved in conducting benzylisoquinoline alkaloid synthesis.  相似文献   

2.
3.
4.
Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome. The subfamily members exhibited conserved sequences, length of exons and phasing of introns. Similarity search of the genomic resources of wild flax species Linum bienne with CYP450 coding sequences of the cultivated flax, revealed the presence of 127 CYP450 gene orthologs, indicating amplification of novel CYP450 genes in the cultivated flax. Seven families CYP73, 74, 75, 76, 77, 84 and 709, coding for enzymes associated with phenylpropanoid/fatty acid metabolism, showed extensive gene amplification in the flax. About 59% of the flax CYP450 genes were present in the EST libraries.  相似文献   

5.
6.
In vertebrates, cytochrome P450s of the CYP2 and CYP3 families play a dominant role in drug metabolism, while in insects members of the CYP6 and CYP28 families have been implicated in metabolism of insecticides and toxic natural plant compounds. A degenerate 3 RACE strategy resulted in the identification of fifteen novel P450s from an alkaloid-resistant species of Drosophila. The strong (17.4-fold) and highly specific induction of a single gene (CYP4D10) by the toxic isoquinoline alkaloids of a commonly utilized host-plant (saguaro cactus) provides the first indication that members of the CYP4 family in insects may play an important role in the maintenance of specific insect-host plant relationships. Strong barbiturate inducibility of CYP4D10 and two other D. mettleri P450 sequences of the CYP4 family was also observed, suggesting a pattern of xenobiotic responsiveness more similar to those of several vertebrate drug-metabolizing enzymes than to putative vertebrate CYP4 homologs.  相似文献   

7.
Sequencing in all areas of the tree of life has produced > 300,000 cytochrome P450 (CYP) sequences that have been mined and collected. Nomenclature has been assigned to > 41,000 CYP sequences and the majority of the remainder has been sorted by BLAST searches into clans, families and subfamilies in preparation for naming. The P450 sequence space is being systematically explored and filled in. Well-studied groups like vertebrates are covered in greater depth while new insights are being added into uncharted territories like horseshoe crab (Limulus polyphemus), tardigrades (Hypsibius dujardini), velvet worm (Euperipatoides_rowelli), and basal land plants like hornworts, liverworts and mosses. CYPs from the fungi, one of the most diverse groups, are being explored and organized as nearly 800 fungal species are now sequenced. The CYP clan structure in fungi is emerging with 805 CYP families sorting into 32 CYP clans. > 3000 bacterial sequences are named, mostly from terrestrial or freshwater sources. Of 18,379 bacterial sequences downloaded from the CYPED database, all are > 43% identical to named CYPs. Therefore, they fit in the 602 named P450 prokaryotic families. Diversity in this group is becoming saturated, however 25% of 3305 seawater bacterial P450s did not match known P450 families, indicating marine bacterial CYPs are not as well sampled as land/freshwater based bacterial CYPs. Future sequencing plans of the Genome 10 K project, i5k and GIGA (Global Invertebrate Genomics Alliance) are expected to produce more than one million cytochrome P450 sequences by 2020. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.  相似文献   

8.
Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host/ecological niche can influence shaping the P450 content of an organism. The present study initiates our understanding of P450 family patterns in basidiomycete biotrophic plant pathogens.  相似文献   

9.
Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom.  相似文献   

10.
Tholl D  Sohrabi R  Huh JH  Lee S 《Phytochemistry》2011,72(13):1635-1646
Volatile organic compounds emitted by plants mediate a variety of interactions between plants and other organisms. The irregular acyclic homoterpenes, 4,8-dimethylnona-1,3,7-triene (DMNT) and 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT), are among the most widespread volatiles produced by angiosperms with emissions from flowers and from vegetative tissues upon herbivore feeding. Special attention has been placed on the role of homoterpenes in attracting parasitoids and predators of herbivores and has sparked interest in engineering homoterpene formation to improve biological pest control. The biosynthesis of DMNT and TMTT proceeds in two enzymatic steps: the formation of the tertiary C15-, and C20-alcohols, (E)-nerolidol and (E,E)-geranyl linalool, respectively, catalyzed by terpene synthases, and the subsequent oxidative degradation of both alcohols by a single cytochrome P450 monooxygenase (P450). In Arabidopsis thaliana, the herbivore-induced biosynthesis of TMTT is catalyzed by the concerted activities of the (E,E)-geranyllinalool synthase, AtGES, and CYP82G1, a P450 of the so far uncharacterized plant CYP82 family. TMTT formation is in part controlled at the level of AtGES expression. Co-expression of AtGES with CYP82G1 at wound sites allows for an efficient conversion of the alcohol intermediate. The identified homoterpene biosynthesis genes in Arabidopsis and related genes from other plant species provide tools to engineer homoterpene formation and to address questions of the regulation and specific activities of homoterpenes in plant-herbivore interactions.  相似文献   

11.
Sporotrichosis is an emerging chronic, granulomatous, subcutaneous, mycotic infection caused by Sporothrix species. Sporotrichosis is treated with the azole drug itraconazole as ketoconazole is ineffective. It is a well-known fact that azole drugs act by inhibiting cytochrome P450 monooxygenases (P450s), heme-thiolate proteins. To date, nothing is known about P450s in Sporothrix schenckii and the molecular basis of its resistance to ketoconazole. Here we present genome-wide identification, annotation, phylogenetic analysis and comprehensive P450 family-level comparative analysis of S. schenckii P450s with pathogenic fungi P450s, along with a rationale for ketoconazole resistance by S. schenckii based on in silico structural analysis of CYP51. Genome data-mining of S. schenckii revealed 40 P450s in its genome that can be grouped into 32 P450 families and 39 P450 subfamilies. Comprehensive comparative analysis of P450s revealed that S. schenckii shares 11 P450 families with plant pathogenic fungi and has three unique P450 families: CYP5077, CYP5386 and CYP5696 (novel family). Among P450s, CYP51, the main target of azole drugs was also found in S. schenckii. 3D modeling of S. schenckii CYP51 revealed the presence of characteristic P450 motifs with exceptionally large reductase interaction site 2. In silico analysis revealed number of mutations that can be associated with ketoconazole resistance, especially at the channel entrance to the active site. One of possible reason for better stabilization of itraconazole, compared to ketoconazole, is that the more extended molecule of itraconazole may form a hydrogen bond with ASN-230. This in turn may explain its effectiveness against S. schenckii vis-a-vis resistant to ketoconazole. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.  相似文献   

12.
The cytochrome P450 s play a significant role in the detoxification of plant allelochemicals and synthetic insecticides in Lepidoptera. In the cotton bollworm Helicoverpa armigera, 2-tridecanone and quercetin can induce P450-dependent monooxygenase activity increased, to further the characterization of P450, the CYP6B6 of cotton bollworm (H. armigera) was cloned, sequenced and expressed in pMAL-p2x vector and expressed in Escherichia coli. The deduced amino acid sequences of cytochrome P450 in the midgut and fat body of H. armigera showed 98.23 and 97.84 % similarity with CYP6B6, respectively. According to nomenclature of P450 s, the P450 genes we got belong to CYP6B. Purification of recombinant protein based on the affinity of MBP for maltose was achieved by Mal-Tag magnetic beads. The purified protein was used to raise polyclonal antibody according to classical procedure. SDS–PAGE and Western blot results indicated that MBP-CYP6B6 had been successfully expressed. The ethoxycoumarin-O-deethylase activity of the purified recombinant protein was 36.5 ± 8.12 pmol of 7-hydroxycoumarin/min/mg protein, which showed the fusion MBP-CYP6B6 had the ability to o-deethylase of 7-ethoxycoumarin.  相似文献   

13.
Data mining methods have been used to identify 356 Cyt P450 genes and 99 related pseudogenes in the rice (Oryza sativa) genome using sequence information available from both the indica and japonica strains. Because neither of these genomes is completely available, some genes have been identified in only one strain, and 28 genes remain incomplete. Comparison of these rice genes with the 246 P450 genes and 26 pseudogenes in the Arabidopsis genome has indicated that most of the known plant P450 families existed before the monocot-dicot divergence that occurred approximately 200 million years ago. Comparative analysis of P450s in the Pinus expressed sequence tag collections has identified P450 families that predated the separation of gymnosperms and flowering plants. Complete mapping of all available plant P450s onto the Deep Green consensus plant phylogeny highlights certain lineage-specific families maintained (CYP80 in Ranunculales) and lineage-specific families lost (CYP92 in Arabidopsis) in the course of evolution.  相似文献   

14.
Multiple adaptations were necessary when plants conquered the land. Among them were soluble phenylpropanoids related to plant protection and lignin necessary for upright growth and long‐distance water transport. Cytochrome P450 monooxygenase 98 (CYP98) catalyzes a rate‐limiting step in phenylpropanoid biosynthesis. Phylogenetic reconstructions suggest that a single copy of CYP98 founded each major land plant lineage (bryophytes, lycophytes, monilophytes, gymnosperms and angiosperms), and was maintained as a single copy in all lineages but the angiosperms. In angiosperms, a series of independent gene duplications and losses occurred. Biochemical assays in four angiosperm species tested showed that 4‐coumaroyl‐shikimate, a known intermediate in lignin biosynthesis, was the preferred substrate of one member in each species, while independent duplicates in Populus trichocarpa and Amborella trichopoda each showed broad substrate ranges, accepting numerous 4‐coumaroyl‐esters and ‐amines, and were thus capable of producing a wide range of hydroxycinnamoyl conjugates. The gymnosperm CYP98 from Pinus taeda showed a broad substrate range, but preferred 4‐coumaroyl‐shikimate as its best substrate. In contrast, CYP98s from the lycophyte Selaginella moellendorffii and the fern Pteris vittata converted 4‐coumaroyl‐shikimate poorly in vitro, but were able to use alternative substrates, in particular 4‐coumaroyl‐anthranilate. Thus, caffeoyl‐shikimate appears unlikely to be an intermediate in monolignol biosynthesis in non‐seed vascular plants, including ferns. The best substrate for CYP98A34 from the moss Physcomitrella patens was also 4‐coumaroyl‐anthranilate, while 4‐coumaroyl‐shikimate was converted to lower extents. Despite having in vitro activity with 4‐coumaroyl‐shikimate, CYP98A34 was unable to complement the Arabidopsis thaliana cyp98a3 loss‐of‐function phenotype, suggesting distinct properties also in vivo.  相似文献   

15.
There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases—confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development.  相似文献   

16.
We explored the molecular diversity and functional capabilities of cytochrome P450 monooxygenases (P450s) from the brown-rot basidiomycete Postia placenta. Using bioinformatic and experimental data, we found 250 genes of P450s in the whole genome, including 60 putative allelic variants. Phylogenetic analysis revealed the presence of 42 families, including 18 novel families. Comparative phylogenetic analysis of P450s from P. placenta and the white-rot basidiomycete Phanerochaete chrysosporium suggested that vigorous gene duplication and molecular evolution occurred after speciation of basidiomycetes. Among the 250 gene models, 184 were isolated as full-length cDNA and transformed into Saccharomyces cerevisiae to construct a functional library in which recombinant P450s were co-expressed with yeast NADPH-P450 oxidoreductase. Using this library, the catalytic potentials of P450s against a wide variety of compounds were investigated. A functionomic survey allowed the discovery of novel catalytic properties of P. placenta P450s. The phylogenetic diversity of the CYP53 family in P. placenta was clear, and CYP53D2 is capable of converting stilbene derivatives. This is the first report of this peculiar function of the CYP53 family. Our increased understanding of the molecular and functional diversity of P450s in this fungus will facilitate comprehension of metabolic diversity in basidiomycetes and has future biotechnology applications.  相似文献   

17.
In vertebrates, cytochrome P450s of the CYP2 and CYP3 families play a dominant role in drug metabolism, while in insects members of the CYP6 and CYP28 families have been implicated in metabolism of insecticides and toxic natural plant compounds. A degenerate 3 RACE strategy resulted in the identification of fifteen novel P450s from an alkaloid-resistant species of Drosophila. The strong (17.4-fold) and highly specific induction of a single gene (CYP4D10) by the toxic isoquinoline alkaloids of a commonly utilized host-plant (saguaro cactus) provides the first indication that members of the CYP4 family in insects may play an important role in the maintenance of specific insect-host plant relationships. Strong barbiturate inducibility of CYP4D10 and two other D. mettleri P450 sequences of the CYP4 family was also observed, suggesting a pattern of xenobiotic responsiveness more similar to those of several vertebrate drug-metabolizing enzymes than to putative vertebrate CYP4 homologs. Received: 14 August 1997 / Accepted: 24 March 1998  相似文献   

18.

Background

Recent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to root comparative analyses. A physical map, BAC end sequences and sample shotgun sequences provide a first view of the 870 Mbp Amborella genome.

Results

Analysis of Amborella BAC ends sequenced from each contig suggests that the density of long terminal repeat retrotransposons is negatively correlated with that of protein coding genes. Syntenic, presumably ancestral, gene blocks were identified in comparisons of the Amborella BAC contigs and the sequenced Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa genomes. Parsimony mapping of the loss of synteny corroborates previous analyses suggesting that the rate of structural change has been more rapid on lineages leading to Arabidopsis and Oryza compared with lineages leading to Populus and Vitis. The gamma paleohexiploidy event identified in the Arabidopsis, Populus and Vitis genomes is shown to have occurred after the divergence of all other known angiosperms from the lineage leading to Amborella.

Conclusions

When placed in the context of a physical map, BAC end sequences representing just 5.4% of the Amborella genome have facilitated reconstruction of gene blocks that existed in the last common ancestor of all flowering plants. The Amborella genome is an invaluable reference for inferences concerning the ancestral angiosperm and subsequent genome evolution.  相似文献   

19.
Completely sequenced plastomes provide a valuable source of information about the duplication, loss, and transfer events of chloroplast genes and phylogenetic data for resolving relationships among major groups of plants. Moreover, they can also be useful for exploiting chloroplast genetic engineering technology. Ericales account for approximately six per cent of eudicot diversity with 11,545 species from which only three complete plastome sequences are currently available. With the aim of increasing the number of ericalean complete plastome sequences, and to open new perspectives in understanding Mediterranean plant adaptations, a genomic study on the basis of the complete chloroplast genome sequencing of Arbutus unedo and an updated phylogenomic analysis of Asteridae was implemented. The chloroplast genome of A. unedo shows extensive rearrangements but a medium size (150,897 nt) in comparison to most of angiosperms. A number of remarkable distinct features characterize the plastome of A. unedo: five-fold dismissing of the SSC region in relation to most angiosperms; complete loss or pseudogenization of a number of essential genes; duplication of the ndhH-D operon and its location within the two IRs; presence of large tandem repeats located near highly re-arranged regions and pseudogenes. All these features outline the primary evolutionary split between Ericaceae and other ericalean families. The newly sequenced plastome of A. unedo with the available asterid sequences allowed the resolution of some uncertainties in previous phylogenies of Asteridae.  相似文献   

20.
Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with respect to motif length, type and repeat number. Interestingly, several microsatellite characteristics seemed to be constant in plant evolution, which can be well explained by the general biological rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号