首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signum, a new fungicide developed by BASF, was applied during 6 successive years against fungal diseases in strawberries. The product is formulated as a water dispersible granule, containing 6.7 % pyraclostrobin and 26.7 % boscalid. Pyraclostrobin is similar in chemistry to other strobilurin fungicides like kresoxim-methyl and trifloxystrobin, registered for fruit disease control. Boscalid belongs to the class of carboxyanilides. Both components in the premix formulation combine two different biochemical modes of action in the fungal cell respiration. Therefore, this co-formulation gives a broad-spectrum activity and also a reduced resistance risk for different target pathogens. Botrytis cinerea is the most important disease on strawberry-fruits and thus the control of fruit rot is mainly focused on this fungus. In average over 6 years, Signum has not only given a very good control against Botrytis fruit rot, but it has also shown a high performance in the control of Colletotrichum. Besides, Signum provides good control of powdery mildew (Podosphaera aphanis) and limits the shift to other fruit rots like leather rot (Phytophthora cactorum and leak (Rhizopus, Mucor). The availability of several categories of fungicide families with a different mode of action gives opportunities in alternating different fungicides and is the best guarantee for a sustainable control of fruit rot in all kinds of strawberry production methods. Signum should be integrated in an overall disease management program. Trials, in which the applications of Signum were timed on disease forecasting, based on environmental factors favorable for Botrytis development, were very promising. This tool can also help in establishing the IPM-concept in the production of strawberries.  相似文献   

2.
The introduction of site-specific fungicides almost 50 years ago has revolutionized chemical plant protection, providing highly efficient, low toxicity compounds for control of fungal diseases. However, it was soon discovered that plant pathogenic fungi can adapt to fungicide treatments by mutations leading to resistance and loss of fungicide efficacy. The grey mould fungus Botrytis cinerea, a major cause of pre- and post-harvest losses in fruit and vegetable production, is notorious as a ‘high risk’ organism for rapid resistance development. In this review, the mechanisms and the history of fungicide resistance in Botrytis are outlined. The introduction of new fungicide classes for grey mould control was always followed by the appearance of resistance in field populations. In addition to target site resistance, B. cinerea has also developed a resistance mechanism based on drug efflux transport. Excessive spraying programmes have resulted in the selection of multiresistant strains in several countries, in particular in strawberry fields. The rapid erosion of fungicide activity against these strains represents a major challenge for the future of fungicides against Botrytis. To maintain adequate protection of intensive cultures against grey mould, strict implementation of resistance management measures are required as well as alternative strategies with non-chemical products.  相似文献   

3.
AIM: Test of Bacillus subtilis strain GA1 for its potential to control grey mould disease of apple caused by Botrytis cinerea. METHODS AND RESULTS: GA1 was first tested for its ability to antagonize in vitro the growth of a wide variety of plant pathogenic fungi responsible for diseases of economical importance. The potential of strain GA1 to reduce post-harvest infection caused by B. cinerea was tested on apples by treating artificially wounded fruits with endospore suspensions. Strain GA1 was very effective at reducing disease incidence during the first 5 days following pathogen inoculation and a 80% protection level was maintained over the next 10 days. Treatment of fruits with an extract of GA1 culture supernatant also exerted a strong preventive effect on the development of grey mould. Further analysis of this extract revealed that strain GA1 produces a wide variety of antifungal lipopeptide isomers from the iturin, fengycin and surfactin families. A strong evidence for the involvement of such compounds in disease reduction arose from the recovery of fengycins from protected fruit sites colonized by bacterial cells. CONCLUSIONS: The results presented here demonstrate that, despite unfavourable pH, B. subtilis endospores inoculated on apple pulp can readily germinate allowing significant cell populations to establish and efficient in vivo synthesis of lipopeptides which could be related to grey mould reduction. SIGNIFICANCE AND IMPACT OF THE STUDY: This work enables for the first time to correlate the strong protective effect of a particular B. subtilis strain against grey mould with in situ production of fengycins in infected sites of apple fruits.  相似文献   

4.
In fruit growing preharvest sprayings in the orchard are mainly applied to protect fruit from decaying. Next to multisite fungicides (captan, thiram, tolylfluanid) the most commonly used products recognized for the Belgium market are Bellis (pyraclostrobin & boscalid) and the combination of Topsin M (thiophanate-methyl) and Frugico (diethofencarb). In general the spraying schedule varies depending on weather conditions (infection risk), preharvest interval of available fungicides, fruitgrower and cultivar of pome fruit (apple/pear). Facing the climatological conditions before picking the residue loading on the fruit surface can differ enormously. Also wet (pre)grading is considered to decrease the product residue resulting to fruits which are less protected before entering the cold storage room. In this context a partially replacement of the preharvest treatments by one postharvest application could offer a reliable alternative to the PPP reduction program (Plant Protection Products) in the orchard. A standardized application method by dipping or drenching will cover the fruits homogenically resulting in a rationalized fungicide use compared to the preharvest sprayings in the orchard. For the Belgium market Philabuster (imazalil & pyrimethanil) is registered for postharvest treatments since for this product a proper solution for the waste water of postharvest uses was developed to protect surface waters (Funds technology). Philabuster provides an advanced mould control towards fruit rot pathogens Gloeosporium spp., Botrytis cinerea and Penicillium spp. In this context several trials were set up to evaluate the biological efficacy of Philabuster alone or in combination with preharvest sprayings in the orchard. In concrete different preharvest spraying schedules were applied in the last six weeks before harvest on apple and pear facing parameters as rational fungicide use, antifungal effectiveness and cost price. The purpose was to select the optimal combination in use of preharvest fungicides with Philabuster as postharvest treatment, which offer full protection towards all key pathogens in apple and pear.  相似文献   

5.
The capability of yeast Trichosporon sp., an antagonist isolated from peach fruit, in biological control was evaluated in apple ( Malus domestica Borkh. cv. Fuji) fruits, when inoculated with different concentrations of Botrytis cinerea Pers. and Penicillium expansum (Link) Thom, as well as in combination with calcium and fungicide. The concentrations of the yeast cells and pathogen spores obviously influenced disease incidence and lesion development in apples. There was a significant negative correlation between concentrations of the yeast cells and infectivity of the pathogens. When the yeast cell suspensions reached the concentration of 108 colony-forming units (CFU)/mL, there was no infection caused by B. cinerea and P. expansum with spore concentrations below 106 spores/mL in apple fruits. The yeast at concentrations of 106-107 CFU/mL in combination with fungicide (iprodione at 50 μL/L) provided control of decay caused by B. cinerea and P.expansum better than separate application. Effect of controlling gray mould and blue mould rots was enhanced when Trichosporon sp., even at low concentration of 105 CFU/mL, was applied in the presence of 1%-2% CaCl2 in an aqueous suspension.  相似文献   

6.

Utilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.

  相似文献   

7.
Pears are highly perishable products, especially during the post-harvest phase, when considerable losses can occur. Among the fungal diseases, blue mold caused by Penicillium expansum, grey mould caused by Botrytis cinerea, Mucor rot caused by Mucor piriformis are common on pear fruits. Other (weak) pathogens like Phialophora malorum, Alternaria spp., and Cladosporium herbarum tend to infect wounds and senescent fruits. A post-harvest fungicide treatment can reduce decay but effectiveness decreases with the appearance of resistant strains. There is a clear need to develop new and alternative methods of controlling post-harvest diseases. The emerging technologies for the control of post-harvest fungal diseases are essentially threefold: application of antagonistic microorganisms, application of natural antimicrobial substances and application of sanitizing products. Two biological control products, Aspire (Candida oleophila I-182) (Ecogen, Langhorne, PA, USA) and Bio-Save 110 (Pseudomonas syringae) (EcoScience, Worcester, MA, USA; formerly Bio-Save 11) are currently registered in the USA for post-harvest application to pears. Other potential biocontrol agents have been isolated from fruit and shown to suppress post-harvest decay in pear. It is important that evaluation of these microorganisms be carried out in a product formulation because the formulation may improve or diminish antagonistic efficacy depending on the concentration of chemical product and the duration of exposure to the treatment. Plants produce a large number of secondary metabolites with antimicrobial effects on post-harvest pathogens. Detailed studies have been conducted on aromatic compounds, essential oils, volatile substances and isothiocyanates, with encouraging results. In particular, allyl-isothiocyanate used as a volatile substance, controls blue mould in 'Conference' and 'Kaiser' pear inoculated with a thiabendazole-resistant strain. Sanitizing products such as chlorine dioxide, peracetic acid and ozone have considerable fungicidal activity against P. expansum and M. piriformis, depending on the concentration of chemical product and the duration of exposure to the treatment. Sanitizing solutions can be integrated easily with current handling and storage practices; however, further research is required to define the effective procedures better.  相似文献   

8.
Botrytis cinerea has been found to be highly pathogenic to 'Chardonnay' and 'Pinot noir' cultivars of the grape-vine producing the characteristic grey mould symptoms within 7 days of inoculation to the vitro-plants. The yeast Pichia anomala (strain FY-102), isolated from apple skin, was found to be antagonistic to B. cinerea as it completely inhibited the appearance of the grey mould symptoms when grown together. The yeast was responsible for morphological changes such as coagulation and leakage of the cytoplasm of B. cinerea. The pathogen, when applied together with P. anomala, failed to bring about the grey mould symptoms on the grape-vine, suggesting that the yeast could control the expression of this disease. An account of the interaction between B. cinerea and P. anomala, as well as the sequences of the complete ITS region of the ribosomal DNA of the yeast are described here.  相似文献   

9.
Botrytis cinerea is a major pathogen of fruit and vegetable crops causing both pre- and post-harvest grey mould. We have analysed 16 Arabidopsis thaliana ecotypes for natural variation in B. cinerea susceptibility. Susceptibility was associated with lower camalexin accumulation, and three ecotypes (Cape Verdi Islands (Cvi-0), Slavice (Sav-0) and Kindalville (Kin-0)) showed differential susceptibility to the two B. cinerea isolates used. Subsequently, to better understand the genetic control of grey mould disease, we assayed the Arabidopsis Landsberg erecta (Ler) x Columbia (Col-0) recombinant inbred population with the two isolates, and identified multiple small-to-medium-effect quantitative trait loci (QTL) governing susceptibility. Interestingly, the QTL for each isolate are distinct, suggesting that different mechanisms govern defence against these two isolates. Two QTL for each isolate exhibited epistatic interactions with specific allele combinations generating heightened B. cinerea susceptibility.  相似文献   

10.
A strain of Streptomyces sp. (M10) antagonistic to Botrytis cinerea was isolated from orchard soil obtained from Jeju Island, Korea. An antifungal substance (CN1) was purified from the culture extracts of the strain, and then identified as valinomycin through extensive spectroscopic analyses. Valinomycin showed potent in vitro antifungal activity against Botrytis cinerea and also in vivo control efficacy against Botrytis blight development in cucumber plants. Overall, the disease control efficacy of valinomycin was similar to that of vinclozolin, a commercial fungicide. This study provides the first report on the disease control efficacy of valinomycin against Botrytis blight.  相似文献   

11.
Fruit grey mould, caused by the fungus Botrytis cinerea, is known to be a harmful disease of strawberry at postharvest stage. However, effects of an application of biological control agents (BCAs) on strawberry fruit in terms of shift in the microbial community are still unknown. The present research aimed to investigate the effects of an application of BCAs on postharvest microbial populations present on strawberry fruits. Strawberry plants were sprayed with three kinds of BCA, RhizoVital 42 fl. (Bacillus amyloliquefaciens FZB42), Trianum‐P (Trichoderma harzianum T22) and Naturalis (Beauveria bassiana ATCC 74040), targeting Botrytis cinerea fungus. Control plots were composed of water and fungicide treatments. Microbial communities (bacteria and fungi) were analysed via next‐generation sequencing on an Illumina MiSeq. Analysis of 16S RNA and ITS rRNA sequences indicated that the BCAs application modified both bacterial and fungal community compositions and diversity. An application of two BCAs together had more effects on microbial community composition than a single application. These results suggest that BCAs can modify bacterial and fungal community composition and diversity on strawberry fruits, which may consequently improve the efficiency and establishment of these products on control of postharvest diseases of fruits, such as grey mould.  相似文献   

12.
番茄灰霉病生防链霉菌筛选及鉴定   总被引:1,自引:0,他引:1  
【背景】由灰葡萄孢侵染所致的番茄灰霉病是一类重要的真菌病害,生物防治具有环境友好、病原菌不易产生抗药性等特点,是果蔬灰霉病绿色防控的有效措施。【目的】筛选对番茄灰霉病具有防病作用且能促进番茄种子发芽的广谱拮抗性链霉菌,并明确该菌株种级分类地位。【方法】采用琼脂块法筛选拮抗番茄灰霉病菌的链霉菌菌株,采用对峙培养法和生长速率法检测菌株T22抑菌谱,通过产胞外酶活性检测、离体叶片防效和种子发芽试验明确该菌株的防病促生相关特性,根据形态学特征、生理生化特性和分子生物学方法对该菌株进行种类鉴定。【结果】从分离的56株放线菌中筛选到14株对番茄灰霉病菌具有拮抗效果的放线菌菌株,其中链霉菌T22对番茄灰霉病菌抑制作用最强,且具有较广抑菌谱,同时菌株T22具有产生纤维素酶和几丁质酶的能力。菌株T22无菌发酵滤液对番茄灰霉病菌、桃褐腐病菌、黄瓜枯萎病菌抑菌率分别为84.6%、81.5%和79.1%;其无菌发酵滤液原液对番茄灰霉病离体防效为55.1%;100倍稀释液处理番茄种子,胚轴、胚根和种子活力指数分别增加15.1%、29.7%和43.9%。根据形态学特征、生理生化特性和多基因聚类分析将链霉菌T22鉴定为白黑链霉菌(Streptomycesalboniger)。【结论】白黑链霉菌T22具有较强的抗真菌、产胞外酶、防病和促生活性,在番茄灰霉病生物防治中具有较好的开发应用潜力。  相似文献   

13.
灰霉病由灰葡萄孢侵染所致,化学防治是目前最常用的治理方法,而随着杀菌剂的广泛使用,抗药菌株频繁出现。本文就近年来已研究报道的灰葡萄孢菌的抗药分子位点进行了系统总结,包括六大类杀菌剂,涉及5个基因;对灰霉病菌抗药位点的分子检测方法进行了综述,包括测序法、CAPS、ARMS、Tetra primer ARMS-PCR、AS real-time PCR、ASPPAA PCR和双杂交探针法,通过对不同检测方法进行比较分析,指出现有技术存在的问题并展望未来高通量的检测方法的发展方向。  相似文献   

14.
采用形态学观察和分子鉴定方法对2011年在陕西省发生的一种烟草未知病害的病原菌进行鉴定。从病叶组织分离纯化得到病原菌,通过致病性测定以及人工接种后再分离病菌,证明编号LJL007的菌株为该病的致病菌。依据病原菌的形态学和培养特征,将菌株LJL007鉴定为灰葡萄孢Botrytis cinerea Pers.,其有性型为富氏葡萄孢盘菌Botryotinia fuckeliana Whetzel。通过核糖体DNAITS序列分析,分离菌株LJL007序列(登录号:HM17900)与富氏葡萄孢盘菌序列(登录号:HM849615)同源性达100%,进一步证明该病原菌是灰葡萄孢Botrytis cinerea。云芝多糖在离体条件下,对灰葡萄孢的菌丝生长和孢子萌发均无直接抑制作用。云芝多糖对烟草灰霉病有较好预防保护作用,其预防效果可达56.29%。云芝多糖可显著提高烟草体内几丁质酶和β-1,3-葡聚糖酶活性,其活性峰值分别比对照提高56.89%和429.83%,说明云芝多糖可诱导植物产生抗病性。  相似文献   

15.
Ethylene production by flowers, petals and leaves of rose was correlated with severity of grey mould. However, when the host became completely macerated, ethylene production diminished. Ethylene production by Botrytis cinerea grown on autoclaved flowers which were supplemented with methionine was negligible. Methionine spray, incubation with ethylene, or precooling of flowers at 4°C increased disease incidence considerably. Ethylene also induced susceptibility of carnation flowers to attack by B. cinerea. On the other hand, sprays of silver thiosulphate (STS) aminooxyacetic acid (AOA) and aminoethoxyvinylglycine (AVG) decreased disease severity in rose petals and leaves inoculated with mycelial plugs or conidia. Treatment of cut rose flowers with STS (by dipping) or AOA (by spraying) significantly decreased disease incidence during subsequent incubation at 20 and 10°C. This suggests a treatment for reducing grey mould damage in flowers transported overseas.  相似文献   

16.
A screening programme is described for the assessment of the potential of biocontrol agents to control grey mould of strawberries caused by Botrytis cinerea. Bacteria were isolated from strawberry fruits, leaves and flowers from a commercial field site and screened for antagonism towards B. cinerea using two in vitro and one in vivo screening techniques. From 559 microorganisms isolated, 108 inhibited pathogen growth on agar plates and 27 of these prevented spore germination on Cellophane membranes. The ability of these 27 isolates to inhibit infection of young strawberry leaves by B. cinerea on whole plants under glass was then tested. Seven isolates reduced grey mould development and were subsequently assessed in a field trial. Two isolates, one of Bacillus pumilus and one of Pseudomonas fluorescens, were as effective or more effective than standard dichlofluanid sprays and may therefore be of potential value as antagonists of B. cinerea.  相似文献   

17.
PHILABUSTER is a new post-harvest fungicide developed by Janssen Pharmaceutica N.V.. It provides an advanced mould control by post-harvest treatments of citrus and pome fruit. The product is formulated as a stable suspension concentrate intended for dilution in water before use. PHILABUSTER 400 SC contains 200 g/L imazalil and 200 g/L pyrimethanil. Both active ingredients have a different single site mode of action. Imazalil inhibits ergosterol biosynthesis (DMI), whereas pyrimethanil interferes with fungal enzyme secretion and methionine biosynthesis. Due to the combination of these low risk fungicides a good anti-resistance management can be obtained. In case of existing reduced sensitivity of a population to DMI or MBC fungicides, no cross-resistance with pyrimethanil was observed. PHILABUSTER showed good activity by post-harvest treatment against key pathogens on apple and pear Penicillium expansum (blue mold), Botrytis cinerea (gray mold) and Gloeosporium spp. (lenticel rot) in small and large scale experiments with artificial or natural infections. By dip treatment of large volumes of fruit (up to 50 tons) the depletion of both active ingredients in the treatment water was low, both when plastic or wooden bins were used. Lower dose rates resulted in an inferior and inconsistent residue level of both active ingredients on fruit. Possible advantages of post-harvest treatments versus field treatments for the control of storage diseases are discussed.  相似文献   

18.
Control of Grapevine Grey Mould with Trichoderma harzianum T39   总被引:1,自引:0,他引:1  
The efficacy of a formulation of Trichoderma harzianum T39 for control of grey mould (Botrytis cinerea) on grapevine was examined in 133 experiments conducted under diverse commercial conditions. The experiments were carried out between 1988 and 1994 in 19 countries and on 34 varieties. The average disease incidence in the untreated plots of all experiments was 42 2.3% (mean standard error). In general, the reduction of disease achieved by T. harzianum application was lower than that obtained by chemical fungicides: 36.3 2.7% disease reduction in biocontrol treatments and 52.3 2.6% in the exclusively chemical treatments. Control efficacy declined when the interval between application and assessment dates increased to 5 weeks. The experiments also included treatments in which T. harzianum was integrated with chemical fungicides, the two being applied alternately, and a reduced chemical treatment in which only chemicals were applied, and only at the times when chemicals were applied in the integrated treatment. The mean control efficacy in these treatments was 55.8 3.2% and 44.2 4.9% respectively. The roles of the integration of biological and chemical compounds in reducing pesticide residues in fruit at harvest and lowering the pressure towards development of fungicide-resistance populations of B. cinerea are discussed.  相似文献   

19.
Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea   总被引:1,自引:0,他引:1  
Botrytis cinerea, a model necrotrophic fungal pathogen that causes gray mold as it infects different organs on more than 200 plant species, is a significant contributor to postharvest rot in fresh fruit and vegetables, including tomatoes. By describing host and pathogen proteomes simultaneously in infected tissues, the plant proteins that provide resistance and allow susceptibility and the pathogen proteins that promote colonization and facilitate quiescence can be identified. This study characterizes fruit and fungal proteins solubilized in the B. cinerea-tomato interaction using shotgun proteomics. Mature green, red ripe wild type and ripening inhibited (rin) mutant tomato fruit were infected with B. cinerea B05.10, and the fruit and fungal proteomes were identified concurrently 3 days postinfection. One hundred eighty-six tomato proteins were identified in common among red ripe and red ripe-equivalent ripening inhibited (rin) mutant tomato fruit infected by B. cinerea. However, the limited infections by B. cinerea of mature green wild type fruit resulted in 25 and 33% fewer defense-related tomato proteins than in red and rin fruit, respectively. In contrast, the ripening stage of genotype of the fruit infected did not affect the secreted proteomes of B. cinerea. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their role in plant-pathogen interactions.  相似文献   

20.
Pichia membranifaciens strain FY-101, isolated from grape skins, was found to be antagonistic to Botrytis cinerea, the causal organism of the grey mould disease of the grapevine. When grown together on solid as well as liquid media, the yeast brings about the inhibition of this parasitic fungus, coagulation and leakage of its cytoplasm, and suppression of its ability to produce the characteristic grey mould symptoms on the grapevine plantlets. In vitro experiments confirm that this yeast can be used as a biological control organism against B. cinerea. An account of the molecular characterisation of P. membranifaciens (complete sequence of the ITS region of its ribosomal DNA, GenBank accession No. AF 270935), as well as the interaction between B. cinerea and the yeast, are given here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号