首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
AIMS: The biopesticide effect of four green composts against fusarium wilt in melon plants and the effect of soil quality in soils amended with composts were assayed. METHODS AND RESULTS: The composts consisted of pruning wastes, with or without addition of coffee wastes (3/1 and 4/1, dry wt/dry wt) or urea (1000/1, dry wt/dry wt). In vitro experiments suggested the biopesticide effect of the composts against Fusarium oxysporum, while only the compost of pine bark and urea (1000/1dry wt/dry wt) had an abiotic effect. Melon plant growth with composts and F. oxysporum was one to four times greater than in the non-amended soil, although there was no significant decrease in the level of the F. oxysporum in the soil. The addition of composts to the soil also improved its biological quality, as assessed by microbiological and biochemical parameters: ATP and hydrolases involved in the P (phosphatase), C (beta-glucosidase) and N (urease) cycles. CONCLUSIONS: Green composts had greater beneficial characteristics, improved plant growth and controlled fusarium wilt in melon plants. These composts improve the soil quality of semi-arid agricultural soils. SIGNIFICANCE AND IMPACT OF THE STUDY: Biotic and abiotic factors from composts have been tested as responsible of their biopesticide activity against fusarium wilt.  相似文献   

3.
The biocontrol potential of two arbuscular mycorrhizal fungi (AMF) (Funneliformis mosseae and Acaulospora laevis) and Trichoderma viride was assessed against tomato wilt caused by Fusarium oxysporum Schlecht. f. sp. lycopersici under pot condition. All the bioagent showed appreciable results in increasing plant growth. Combined inoculation of F. mosseae, A. laevis and T. viride showed maximum increases in plant height, shoot fresh weight, root dry weight, number of leaves and number of branches per plant while dual inoculation of F. mosseae and T. viride increased rest of the growth parameters like shoot dry weight, root fresh weight, root length and leaf area. AM colonisation and spore number was found highest in single inoculation of AMF, which decreases with the addition of T. viride. But, this decrease has no effect on biocontrol efficiency of bioagents. Photosynthesis, chlorophyll content and nutrient content were markedly decreased by pathogen infection. Bioagent application overcomes this effect and a remarkable increase in the plant phosphorus and nitrogen content was recorded. Among both the AMF, F. mosseae proved to be more effective strain compared to A. laevis for tomato. Maximum reduction in disease incidence and severity was recorded in combined inoculation of F. mosseae, A. laevis and T. viride. Whereas control plants without any bioagent showed maximum occurrence of disease. The findings of this study concludes that soil inoculation with F. mosseae along with root inoculation with conidial suspension of T. viride before transplantation offered better survival and resistance to tomato seedlings against Fusarium wilt.  相似文献   

4.
Fusarium oxysporum was isolated from stem of basil plants showing symptoms of wilt, stem blight and collar root rot. Pathogenicity tests indicated that F. oxysporum f. sp. basilici is the causal agent of this disease. This is the first report of this pathogen in Egypt. The suppressive effects of six types of composts on Fusarium wilt disease incidence in basil were evaluated under greenhouse conditions. The effectiveness of these composts and their relation to the microelements content in treated plants was also assessed. Soil treatments with Khaya and Eucalyptus composts significantly reduced the infection percentage and disease severity of basil wilt. Otherwise, the applications of Araucaria, Datura, Ficus and Azadirachta composts showed no effect on both infection percentage and disease severity. Moreover, the Khaya and Eucalyptus compost treatments increased the levels of Iron (Fe), Zinc (Zn) and Manganese (Mn) in treated basil plants than application of Araucaria, Datura, Ficus and Azadirachta composts. In the case of Copper (Cu) content, it was significantly higher only in Eucalyptus-compost-treated plants than in other compost applications. These composts not only reduced the disease incidence but also increased both fresh and dry weight (FW and DW) and microelements contented in basil treated plants. In general, although soil amendment with either Khaya or Eucalyptus compost can reduce the disease incidence of Fusarium wilt on basil plants, microelements contented; FW and DW of these effects can be variable depending on their levels added in soil. According to the results of this study, it can be concluded that the use of compost in the soil as an organic fertiliser increased exchangeable form of microelements in the soil and also the availability of these elements by basil plants.  相似文献   

5.
Fusarium wilt of watermelon commonly occurs in locations where the crop has been grown for many seasons. Its occurrence results in a severely decreased watermelon crop. The goal of this study was to assess the capability of a new product (bio-organic fertilizer) to control the wilt in Fusarium-infested soil. Pot experiments were conducted under growth chamber and greenhouse conditions. The results showed that the fertilizer controlled the wilt disease. Compared with control pots, the incidence rates of Fusarium wilt at 27 and 63 days following treatment of the plants with the bio-organic fertilizer at a rate of 0.5% (organic fertilizer + antagonistic microorganisms, including 3 × 109 CFU g−1 Paenibacillus polymyxa and 5 × 107 CFU g−1 Trichoderma harzianum) were reduced by 84.9 and 75.0%, respectively, in both the growth chamber and greenhouse settings. The activities of antioxidases (catalase, superoxide dismutase and peroxidase) in watermelon leaves increased by 38.9, 150 and 250%, respectively. In the roots, stems and leaves, the activity of β-1,3-glucanase (pathogenesis-related proteins) increased by 80, 1140 and 100% and that of chitinase increased by 240, 80, and 20%, respectively, while the contents of malondialdehyde fell by 56.8, 42.1 and 45.9%, respectively. These results indicate that this new fertilizer formula is capable of protecting watermelon from Fusarium oxysporum f.sp. niveum. The elevated levels of defense-related enzymes are consistent with the induction and enhancement of systemic acquired resistance of plant.
Qirong ShenEmail:
  相似文献   

6.
In order to build integrated strains with superior growth-promoting and disease-suppression effects, the biological control efficacy of Fo47 solid agents combined with actinomycetes strains toward Fusarium oxysporum and Verticillium dahliae were investigated in experiments on watermelon, cotton and eggplant. Five actinomycetes strains were prepared by solid fermentation. The count of viable solid agents, initially with propagules at 107–1011 CFU/g, slowly decreased after being stored one year at room temperature. After being inoculated into sterile soil for 50 days, the viable count of strain Fo47 remained at a stable level. The suppressive effects of Fo47 combined with strain QLP12 on Fusarium wilt on watermelon and cotton, and Verticillium wilt on eggplant, reaching 58.47%, 50.73% and 58.82%, respectively. This was significantly better than the single strain Fo47 alone, and growth of these treated plants and the colonisation rate of Fo47 were increased substantially as well. These results indicate that solid integrated agents with a high viability count and superior stability in soil could increase disease suppression and promote plant growth by synergy with different strains. The increased suppression obtained by Fo47 combined with actinomycete strains was not due to a simple addition of different mechanisms of biocontrol agents. By being intelligently integrated, these combinations increase disease suppression and provide the best biocontrol effect.  相似文献   

7.
钩状木霉生物合成纳米银及其杀菌性能   总被引:1,自引:0,他引:1  
【目的】以钩状木霉为微生物材料合成纳米银粒子,并对其杀菌性能进行测定。【方法】将钩状木霉与2 mmol/L的Ag NO3溶液混合暗培养合成纳米银,采用UV-vis、XRD和TEM等方法对纳米银进行表征;利用原子吸收光谱仪和热重分析仪测定并计算银离子的转化率和纳米银的产率;以大肠杆菌和枯草芽孢杆菌为受试菌株检测纳米银的杀菌性能。【结果】钩状木霉与硝酸银混合的培养液颜色为红褐色,UV-vis图谱显示在420 nm左右出现了强的吸收峰;XRD图谱出现了4个特征性衍射峰,分别对应纳米银的4个晶面;TEM照片可以看出纳米银多数为球形,具有单分散性;粒度分布仪显示纳米银具有很窄的粒径分布,在1-13 nm之间,平均粒径为6.69 nm;根据原子光谱吸收仪测定的结果得到银的转化率为84.41%,根据热重分析结果得到纳米银的产率为67.12%;纳米银对大肠杆菌的MBC为10 mg/L,MIC为7 mg/L;对枯草芽孢杆菌的MBC为5 mg/L,MIC为4 mg/L。【结论】钩状木霉与Ag NO3溶液混合培养可以合成纳米银。合成的纳米银大小均匀,粒径小且分布很窄,具有面心立方结构,是纯净的,产率约为67.12%;纳米银对枯草芽孢杆菌的致死效果好于对大肠杆菌的致死效果。  相似文献   

8.
Sesame (Sesamum indicum L.) is one of the most important oilseed crops in Egypt and worldwide. It is being infected with many pathogens, among these pathogens Fusarium oxysporum f.sp. sesami (Zap.) Cast is causing severe economic losses on sesame. In this study, antagonistic capability of 24 isolates of Trichoderma spp. was assessed in vitro against F. oxysporum f.sp. sesami. Two strains; T. harzianum (T9) and T. viride (T21) were revealed to have high antagonistic effect against F. oxysporum f.sp. sesami in vitro with inhibition percentage about 70 and 67%, respectively. These two isolates proved to have high ability to control Fusarium wilt disease under greenhouse conditions. The highest reduction in disease severity was achieved with T. viride followed by T. harzianum with reduction in disease severity about 77 and 74%, respectively. This study revealed that the time of application of bioagents is a decisive factor in determining the efficacy of Trichoderma isolates to control Fusarium wilt of sesame. It was revealed that the highest reduction in the disease severity was achieved when either Trichoderma viride or T. harzianum were applied 7 days before challenging with the F. oxysporum f.sp. sesami.  相似文献   

9.
G. Lim 《Mycopathologia》1969,39(3-4):345-347
A wilt of marigolds is reported. The causal organism isF. oxysporum f.callistephi race 2. The isolate also affects China asters.
Zusammenfassung Das Verwelken von Marigold ist beschrieben worden. Der ursächliche Organismus istFusa-rium oxysporum f.callistephi, Rasse 2. Derselbe Erreger befällt auch China Asterien.
  相似文献   

10.
11.
Randomly amplified polymorphic DNA (RAPD) analysis and the PCR assay were used in combination with dilution plating on a semiselective medium to detect and enumerate propagules of Trichoderma hamatum 382, a biocontrol agent utilized in compost-amended mixes. Distinct and reproducible fingerprints were obtained upon amplification of purified genomic DNA of T. hamatum 382 with the random primers OPE-16, OPH-19, and OPH-20. Three amplified DNA fragments of 0.35 (OPE-16(0.35)), 0.6 (OPH-19(0.6)), and 0.65 (OPH-20(0.65)) kb were diagnostic for T. hamatum 382, clearly distinguishing it from 53 isolates of four other Trichoderma spp. tested. Some isolates of T. hamatum shared these low-molecular-weight fragments with T. hamatum 382. However, RAPD analysis of isolates of T. hamatum with all three random primers used in consecutive PCR tests distinguished T. hamatum 382 from other isolates of T. hamatum. These three RAPD amplicons were cloned and sequenced, and pairs of oligonucleotide primers for each cloned fragment were designed. Use of the primers in the PCR assay resulted in the amplification of DNA fragments of the same size as the cloned RAPD fragments from genomic DNA of T. hamatum 382. A combination of dilution plating on a semiselective medium for Trichoderma spp. and PCR, with the RAPD primers OPH-19, OPE-16, and OPH-20 or the three sequence-characterized primers, was used successfully to verify the presence of T. hamatum 382 propagules in nine different soil, compost, and potting mix samples. All 23 Trichoderma isolates recovered on semiselective medium from commercial potting mixes fortified with T. hamatum 382 were identified as T. hamatum 382, whereas 274 Trichoderma isolates recovered from the other nine samples were negative in the PCR assay. Thus, this highly specific combination of techniques allowed detection and enumeration of propagules of T. hamatum 382 in fortified compost-amended potting mixes. Sequence-characterized amplified region markers also facilitated the development of a very simple procedure to amplify DNA of T. hamatum 382 directly from fortified compost-amended potting mixes.  相似文献   

12.
Randomly amplified polymorphic DNA (RAPD) analysis and the PCR assay were used in combination with dilution plating on a semiselective medium to detect and enumerate propagules of Trichoderma hamatum 382, a biocontrol agent utilized in compost-amended mixes. Distinct and reproducible fingerprints were obtained upon amplification of purified genomic DNA of T. hamatum 382 with the random primers OPE-16, OPH-19, and OPH-20. Three amplified DNA fragments of 0.35 (OPE-160.35), 0.6 (OPH-190.6), and 0.65 (OPH-200.65) kb were diagnostic for T. hamatum 382, clearly distinguishing it from 53 isolates of four other Trichoderma spp. tested. Some isolates of T. hamatum shared these low-molecular-weight fragments with T. hamatum 382. However, RAPD analysis of isolates of T. hamatum with all three random primers used in consecutive PCR tests distinguished T. hamatum 382 from other isolates of T. hamatum. These three RAPD amplicons were cloned and sequenced, and pairs of oligonucleotide primers for each cloned fragment were designed. Use of the primers in the PCR assay resulted in the amplification of DNA fragments of the same size as the cloned RAPD fragments from genomic DNA of T. hamatum 382. A combination of dilution plating on a semiselective medium for Trichoderma spp. and PCR, with the RAPD primers OPH-19, OPE-16, and OPH-20 or the three sequence-characterized primers, was used successfully to verify the presence of T. hamatum 382 propagules in nine different soil, compost, and potting mix samples. All 23 Trichoderma isolates recovered on semiselective medium from commercial potting mixes fortified with T. hamatum 382 were identified as T. hamatum 382, whereas 274 Trichoderma isolates recovered from the other nine samples were negative in the PCR assay. Thus, this highly specific combination of techniques allowed detection and enumeration of propagules of T. hamatum 382 in fortified compost-amended potting mixes. Sequence-characterized amplified region markers also facilitated the development of a very simple procedure to amplify DNA of T. hamatum 382 directly from fortified compost-amended potting mixes.  相似文献   

13.
Fusarium wilt is caused by F. oxysporum Schlecht end. Fr. f. sp. ciceris (FOC) is a devastating disease of chickpea in Algeria. In this study, antagonistic effects of B. subtilis MF352017 (Bs1) and Trichoderma harzianum KX523899 (T5) isolated from the rhizosphere of chickpea were investigated separately and in combination for their efficacy in controlling the disease in vivo. The efficacy of the antagonistic biocontrol agents on Fusarium wilt was evaluated based on vegetative and root growth parameters of chickpea. Seed bacterisation with B. subtilis MF352017 (Bs1) and seed treatment with T. harzianum (T5) significantly protected chickpea seedlings from FOC as compared to untreated plants. Plant protection was more pronounced in T. harzianum-treated plants than in bacterised plants. The application of both antagonists effectively suppressed 93.67% of the disease and also enhanced plant growth leading to increased plant height, root length, fresh and dry weights of shoot and root. The mixture of antagonists increased the effectiveness of B. subtilis MF352017 (Bs1) isolate on Fusarium wilt and improved chickpea growth.  相似文献   

14.
两株香蕉枯萎病拮抗细菌的筛选及抑菌机理   总被引:5,自引:0,他引:5  
【目的】从发病蕉园中的健康香蕉根际筛选能有效抑制香蕉枯萎病病原菌生长的拮抗菌,进一步研究其抑菌机理。【方法】应用双层平板初筛和平板对峙实验复筛具有抑菌效果的拮抗菌;经生理生化试验、16S rRNA基因测序和特异引物扩增对拮抗菌进行鉴定;酸沉淀方法提取拮抗菌发酵液抑菌物质粗提液,基于比色法和HPLC测定粗提液对菌丝蛋白质含量、脂质过氧化、麦角甾醇和果胶酶活性的影响。【结果】筛选获得两株拮抗细菌H-2和H-7,初步鉴定为枯草芽孢杆菌和解淀粉芽孢杆菌,Gen Bank登录号分别为KX791428和KX791430;温室盆栽试验显示,两株拮抗菌对香蕉枯萎病的生防效率分别为59.1%和53.0%;H-2和H-7粗提液处理病原菌菌丝后,因脂质过氧化产生的丙二醛含量显著增加,分别达0.55μmol/L和0.48μmol/L;而蛋白含量、麦角甾醇含量和果胶酶活性均显著下降,其中H-2处理的抑制幅度更大,三项指标分别为0.15 mg/g、1.31 mg/g和0.008 7 U/m L,显著低于对照的0.25 mg/g、1.96 mg/g和0.035 U/m L。【结论】从健康香蕉根际筛选到两株拮抗细菌,两者可能通过增强病原菌菌丝的脂质过氧化和降低细胞代谢产物合成的方式抑制病原菌生长,可为两株拮抗菌的生防应用提供理论依据。  相似文献   

15.
《Biological Control》2010,52(3):480-486
The potential of the biological control fungus Penicillium oxalicum to suppress wilt caused by Fusarium oxysporum f. sp. melonis and F. oxysporum f. sp. niveum on melon and watermelon, respectively, was tested under different growth conditions. The area under disease progress curve of F. oxysporum f. sp. melonis infected melon plants was significantly reduced in growth chamber and field experiments. In glasshouse experiments, it was necessary to apply P. oxalicum and dazomet in order to reduce Fusarium wilt severity in melons caused by F. oxysporum f. sp. melonis. For watermelons, we found that P. oxalicum alone reduced the area under the disease progress curve by 58% in the growth chamber experiments and 54% in the glasshouse experiments. From these results, we suggested that P. oxalicum may be effective for the management of Fusarium wilt in melon and watermelon plants.  相似文献   

16.
The biological efficacy of Trichoderma species may differ due to variations in ecosystems. This study was conducted to assess the biocontrol efficacy of some native Trichoderma isolates against Fusarium solani, an important causal agent of potato wilt disease under laboratory and greenhouse conditions at Shahrood Agricultural Research Centre, Shahrood, Iran, during 2006–2007. Fourteen isolates were collected among which eight showed promising ability in inhibiting the growth of the pathogen through dual culture and production of volatile and non-volatile inhibitors but T. brevicompactum (T1), T. longibrachiatum (T5) and T. asperellum (T2) were almost better than other isolates in inhibiting the mycelial growth of the pathogen in comparison to control in the above three tests (p ≤ 0.01). Isolates performing mycoparasitism under in vitro condition were evaluated against the disease in pot culture under greenhouse condition. In all treatments in which Trichoderma isolates + F. solani were involved lower disease incidence was noticed in comparison to Fusarium-infested control (p ≤ 0.05). Best disease control was observed in potted plants treated with F. solani + T. longibrachiatum (T5) with 6.25% disease incidence in comparison to Fusarium-infested control, in which disease incidence was observed to be 75%. Interaction of T. brevicompactum (T1) and F. solani also indicated good control of the disease by 12.50% of disease incidence.  相似文献   

17.
《Biological Wastes》1989,27(4):271-279
The role of microbial flora in the ability shown by poplar bark compost to combat the carnation phytopathogen Fusarium oxysporum f.sp. dianthi was investigated. Compost was divided into two parts, one sterilized and the other not, and was added to two different types of soil naturally infested with Fusarium oxysporum f. sp. dianthi. Experiments were carried out in greenhouse benches. At 15-day intervals the main microbial groups present in the soil were analysed and visual inspections were carried out to evaluate the mortality of the plants. Protection against Fusarium oxysporum f. sp. dianthi due to the compost added was found in both soil types, and the protection was more marked in the case of sterile compost. This difference in protection is due to a different growth rate of the soil zymogeneous fraction, a consequence of the different amounts of easily assimilable organic matter contained in the two types of compost.  相似文献   

18.
A metabolite of Trichoderma hamatum, 3-(3-isocyanocyclopent-2-enylidene)propionic acid, was tested for its effects on growth of and carbohydrate metabolism in 11 strains of functionally important rumen bacteria. To standardize the biological activity of this unstable metabolite, a rapid, aerobic disc diffusion assay was developed using Escherichia coli ATCC 11775. In an anaerobic broth dilution assay using a medium lacking rumen fluid and containing a soluble carbohydrate, the minimum inhibitory concentration of the metabolite which completely inhibited growth of the rumen bacteria for 18 h at 39 degrees C was generally less than 10 micrograms X mL-1; however, the minimum inhibitory concentrations for Megasphaera elsdenii B159 and Streptococcus bovis Pe(1)8 were 10-25 and 25-64 micrograms X mL-1, respectively. In general, the Gram-negative strains were more sensitive than the Gram positive. The minimum inhibitory concentration for Bacteroides ruminicola 23 grown with glucose was 1 micrograms X mL-1; for B. ruminicola GA33 (glucose), B. succinogenes S85 (cellobiose), and Succinivibrio dextrinosolvens 24 (maltose), it was 2 microgram X mL-1. When added to a cellulose-containing rumen fluid medium, 1-4 micrograms X mL-1 of the metabolite delayed cellulose hydrolysis by B. succinogenes S85, Ruminococcus albus 7, and R. flavefaciens FD1 for up to 4 days, and 6-7 micrograms X mL-1 prevented hydrolysis for at least 1 month. In the presence of the metabolite, the proportion of acetate produced from soluble carbohydrate by the majority of strains increased, but with some strains net production of acetate decreased relative to production of other acidic fermentation products.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
为探究外源褪黑素对棉花抗枯萎病的影响及作用机理,以海岛棉新海14号为材料,于叶面喷施不同浓度褪黑素(0、10、25、50、75、100 μmol/L)后接种棉花枯萎病菌,对枯萎病菌侵染后棉花幼苗进行抗病性鉴定、抗病相关酶活性及基因表达分析。结果表明,外源褪黑素对棉花枯萎病菌的生长无抑制作用,10-100 μmol/L褪黑素均能在一定程度上提高棉花对枯萎病的抗性,其中50 μmol/L褪黑素处理效果最好。与对照相比,50 μmol/L褪黑素预处理能有效减少接菌后棉花叶片中的过氧化氢(H2O2)含量和超氧阴离子(O2·-)的产生速率,增强过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、几丁质酶(CHT)、β-1,3葡聚糖酶(GLU)、多酚氧化酶(PPO)、苯丙氨酸解氨酶(PAL)活性,并显著提高木质素代谢途径相关基因(GbPALGb4CLGbCAD)和类黄酮代谢途径关键基因(GbCHIGbDFRGbTT7)的表达量。表明50 μmol/L 的褪黑素处理能提高接菌后棉花抗氧化能力,增强防御酶活性,调控木质素、类黄酮代谢途径相关基因的表达,从而提高棉花对枯萎病的抗性。  相似文献   

20.
Thirty-two Trichoderma isolates were collected from soils grown with chickpea in central highlands of Ethiopia. The eight isolates were identified by CAB-International as Trichoderma harzianum, T. koningii and T. pseudokoningii. In in vitro tests, all Trichoderma isolates showed significant (P < 0.05) differences in their colony growth and in inhibiting the colony growth of Fusarium oxysporum f.sp. ciceris, race 3. In potted experiment, four Trichoderma isolates were tested as seed treatment on three chickpea cultivars (JG-62 susceptible, Shasho moderately susceptible and JG-74 resistant) against F. oxysporum f.sp. ciceris, race 3. The result showed that T. harzianum and unidentified Trichoderma isolate T23 significantly reduced wilt severity and delayed disease onset. The degree of wilt severity and delay of disease onset varied with chickpea cultivars. Our study revealed that biological control agents such as Trichoderma can be a useful component of integrated chickpea Fusarium wilt management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号