共查询到13条相似文献,搜索用时 46 毫秒
1.
Tetrahydrobiopterin Synthesis Rate and Turnover Time in Neuronal Cultures from Embryonic Rat Mesencephalon and Hypothalamus 总被引:1,自引:2,他引:1
Gregory Kapatos 《Journal of neurochemistry》1990,55(1):129-136
6-(R)-(L-erythro-1',2'-Dihydroxypropyl)-2-amino- 4-hydroxy-5,6,7,8-tetrahydropteridine (tetrahydrobiopterin, BH4) synthesis rate and turnover time were estimated in cultures derived from the embryonic rat mesencephalon (MES) and hypothalamus (HYP) by following the decline in BH4 levels after blockade of BH4 biosynthesis by N-acetylserotonin (NAS) or 2,4-diamino-6-hydroxypyrimidine (DAHP). BH4 content of both culture systems decreased by 75% following an 8-h incubation with maximally effective concentrations of NAS (200 microM) or DAHP (10 mM). Parameters describing BH4 metabolism were calculated from steady-state levels of BH4 and first-order rate constants determined by a nonlinear regression analysis of the exponential BH4 decline. These parameters were confirmed using an alternative procedure that examined the first-order rate of recovery of BH4 following termination of BH4 synthesis inhibition. Steady-state levels of BH4 in HYP cultures (70.3 +/- 9.4 pg/culture) were significantly greater than that for MES (46.5 +/- 2.8 pg/culture). The average fractional rate constants of BH4 loss for MES (0.153 +/- 0.015/h) and HYP (0.159 +/- 0.014/h) were equivalent. The calculated rate of BH4 synthesis was significantly greater for HYP (11.29 +/- 2.13 pg/culture/h) than for MES (7.11 +/- 0.85 pg/culture/h), owing to the greater steady-state concentration of BH4. BH4 turnover time for MES (6.68 +/- 0.67 h) and HYP (6.40 +/- 0.62 h) and half-life for MES (4.63 +/- 0.46 h) and HYP (4.44 +/- 0.43 h) did not differ. The turnover of the cofactor is thus rapid enough that alterations in its synthesis or degradation could acutely modify the rate of monoamine biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
Abstract: Cultures of neonatal rat superior cervical ganglia (SCG) were used to test the hypothesis that the cytokines leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) control GTP cyclohydrolase I (GTPCH) gene expression and 5,6,7,8-tetrahydrobiopterin (BH4) content as traits of the noradrenergic phenotype. Treatment for 7 days with 1 ng/ml of LIF was found to produce the characteristic switch in the SCG neurotransmitter phenotype reported by others, as evidenced by a 60% decline in tyrosine hydroxylase (TH) activity and a 75% increase in choline acetyltransferase activity. This LIF treatment paradigm decreased BH4 levels in a concentration-dependent manner, with a maximal decline of 60% observed at 1 ng/ml. Analysis of the time course of this response indicated that LIF decreased BH4 levels by 60% following 3–7 days of treatment. Treatment of cultures with CNTF (2 ng/ml) resulted in a decline in BH4 levels that was of equal magnitude and followed the same time course as that produced by LIF. The LIF-dependent decline in BH4 levels resulted from a reduction in GTPCH enzyme activity, which decreased by 75% following 7 days of treatment. Nuclease protection assays of RNA extracted from cells treated for 7 days with 2 ng/ml of LIF or CNTF detected a 78–96% reduction in GTPCH mRNA content relative to β-actin mRNA content. Concomitant decreases in TH and GTPCH gene expression in response to LIF or CNTF demonstrate a coordinated regulation of gene expression for this BH4-dependent enzyme and the rate-limiting enzyme in the synthesis of its essential cofactor, BH4. Moreover, these results indicate that GTPCH gene expression in SCG neurons should be regarded as a trait of the noradrenergic phenotype. 相似文献
3.
(1) Axons contain numerous mRNAs and a local protein synthetic system that can be regulated independently of the cell body.
(2) In this study, cultured primary sympathetic neurons were employed, to assess the effect of local protein synthesis blockade
on axon viability and mitochondrial function. (3) Inhibition of local protein synthesis reduced newly synthesized axonal proteins
by 65% and resulted in axon retraction after 6 h. Acute inhibition of local protein synthesis also resulted in a significant
decrease in the membrane potential of axonal mitochondria. Likewise, blockade of local protein transport into the mitochondria
by transfection of the axons with Hsp90 C-terminal domain decreased the mitochondrial membrane potential by 65%. Moreover,
inhibition of the local protein synthetic system also reduced the ability of mitochondria to restore axonal levels of ATP
after KCl-induced depolarization. (4) Taken together, these results indicate that the local protein synthetic system plays
an important role in mitochondrial function and the maintenance of the axon. 相似文献
4.
Abstract: In response to axonal injury, noradrenergic sympathetic neurons of the adult superior cervical ganglion (SCG) alter their neurotransmitter phenotype. These alterations include increases in the levels of the neuropeptides, galanin, vasoactive intestinal peptide (VIP), and substance P (SP) and a decrease in the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH). Previous studies have indicated that after axotomy in vivo, leukemia inhibitory factor (LIF) plays an important role in increasing the contents of galanin and VIP in the SCG. In the present study, by examining the time courses of the changes in LIF and neuropeptide mRNA and by using LIF null mutant mice, we have determined that LIF alters neuropeptide content in part by increasing levels of peptide mRNA. In addition, LIF also makes a small contribution to the axotomy-induced down-regulation of mRNA encoding TH and neuropeptide Y, both of which are normally expressed at high levels in the SCG. Finally, by using a LIF-blocking antiserum, this cytokine was found to regulate SP expression in an in vitro axonal injury model. Thus, after axotomy, a single factor, LIF, participates in the down-regulation of peptides/proteins involved in normal neurotransmission and the up-regulation of a group of neuropeptides normally not present in the SCG that may be involved in regeneration. 相似文献
5.
Abstract: Male Sprague-Dawley rats (325–350 g) were anesthetized with urethane (1.5 g/kg i.p.) and treated with physiological saline, Aspartame (APM; 552 μmol/kg), or tyrosine (Tyr; 552 μmol/kg). Ganglionic transmission and the synthesis of dopamine (DA) and norepinephrine (NE) were measured in the superior cervical ganglion (SCG) following electrical stimulation of the cervical sympathetic trunk (CST). When the CST was stimulated with single pulses, neither APM nor Tyr affected the synthesis of NE or DA. However, in response to low- (5 Hz, 20 s) and high- (20 Hz, 20 s) frequency pulses, the metabolism of DA was increased (p > 0.05), but to the same extent after saline, APM, or Tyr. In rats stimulated with similar low- and high-frequency pulses, the synthesis of NE was increased significantly (p > 0.05) after Tyr, but not after APM or saline. In saline-treated controls, ganglionic transmission was not changed in response to single pulses, or low- or high-frequency stimulation. However, after treatment with APM, ganglionic transmission was depressed significantly (p > 0.01) in response to high-frequency stimulation (single: 0.46 ± 0.09 mV; low: 0.39 ± 0.07 mV; high: 0.27 ± 0.07 mV). After treatment with Tyr, ganglionic transmission was depressed significantly (p > 0.05) in response to both low- and high-frequency stimulation (single: 0.44 ± 0.04 mV; low: 0.22 ±0.12 mV; high: 0.26 ± 0.07 mV). In the nonstimulated SCG, l-3,4-dihydroxyphenylalanine (25 mg/kg) caused a rapid, significant (p > 0.01) increase in the synthesis and metabolism of DA, but not of NE. Treatment with nialamide (200 mg/kg i.p.) followed by electrical stimulation (15 Hz, 15 min) of the CST caused a significant (p > 0.05) increase of both NE and DA in the stimulated SCG. It is concluded that there are both similarities and differences in the regulation of the synthesis of NE and in the modulation of ganglionic transmission after the administration of the precursors APM and Tyr. The results indicate that caution is needed in comparing the neurochemical and neurophysiological effects of different catecholamine precursors. 相似文献
6.
Active uptake of a labelled nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB), into isolated superior cervical sympathetic ganglia (SCG) excised from adult rats was considerably stimulated by the addition of either norepinephrine (NE, 50 microM) or 3,4-dihydroxyphenylethylamine (dopamine, DA, 100 microM) to the medium during aerobic incubation for 2 h at 37 degrees C. The NE-induced increase in AIB uptake was significantly antagonized by the addition of an alpha 1-adrenoceptor antagonist (prazosin, 10 microM) in SCG axotomized 1 week prior to the examination, in which most of the ganglionic neurons had degenerated and reactive proliferation of the satellite glial components was in progress. The addition of neither acetylcholine (ACh, 1 mM) plus eserine (0.1 mM) nor cyclic nucleotides (1 mM) changed the AIB uptake by the SCG. In the axotomized SCG, the NE-evoked increase in AIB uptake was much more pronounced than that of intact or denervated SCG. A kinetic study of the active AIB uptake in the SCG showed that NE produced a decrease of the Km value and an increase in the Vmax, especially in the axotomized SCG. Ganglionic Na+, K+-ATPase activity was greatly stimulated in the presence of NE, but not by ACh. These results strongly suggest that the NE-induced enhancement of active AIB uptake in the isolated SCG is occurring in glial cells rather than in neuronal cells, with a possible alteration of membrane properties for amino acid uptake and with an apparent regulation by the stimulated transport enzyme Na+, K+-ATPase. 相似文献
7.
Abstract— Circadian variations in the activity of tyrosine hydroxylase, tyrosine aminotransferase, and tryptophan hydroxylase were observed in the rat brain stem. Tyrosine hydroxylase exhibited a bimodal pattern with peaks occurring during both the light and dark phases of the circadian cycle. Tyrosine aminotransferase had one daily peak of activity occurring late in the light phase, whereas tryptophan hydroxylase activity was maximal late in the dark phase. Circadian fluctuations in tyrosine hydroxylase activity did not correlate well with circadian variations in the turnover rates of norepinephrine or dopamine nor with levels of these catecholamines. This supports the idea that although tyrosine hydroxylase is the rate-limiting enzyme in the synthesis of catecholamines, other factors must also be involved in the in vivo regulation of this process. Administration of α -methyl- p -tyrosine (AMT) methyl ester HC1 (100 mg/kg) had no effect on the activity of tryptophan hydroxylase, but effectively eliminated the peak of tyrosine hydroxylase activity that occurred during the light phase. AMT also lowered levels of tyrosine aminotransferase, but only at times near the daily light to dark transition. These chronotypic effects of AMT emphasize the importance of "time of day" as a factor that must be taken into account in evaluating the biochemical as well as the pharmacological and toxicological effects of drugs. 相似文献
8.
Abstract: Factors affecting dopamine (DA) synthesis in rat striatal synaptosomes were examined by measuring the conversion of [3 H]tyrosine (Tyr) to [3 H]DA. Any [3 H]DA that was synthesized was extracted into a toluene-based scintillation cocktail and quantitated by liquid scintillation spectrometry. The extraction was facilitated using di-(2-ethylhexyl) phosphoric acid (DEHP), a liquid cation exchanger. DA, apomorphine, and other DA agonists were much less potent inhibitors of DA synthesis in striatal synaptosomes at pH 6.2 than at pH 7.2. 3-(3-Hydroxyphenyl)- N - n -propylpiperidine (3-PPP), a putative DA autoreceptor agonist, was inactive at pH 6.2. However, at pH 7.2, 3-PPP did inhibit DA synthesis. This inhibition was reversed by sulpiride, a DA receptor antagonist, but not by benztropine, a DA uptake blocker, suggesting that 3-PPP inhibits DA synthesis by stimulating the DA autoreceptor. DA release from synaptosomes was much greater at pH 6.2 than at pH 7.2, most probably because the synaptosomal membrane appears to be depolarized at pH 6.2, as measured by the accumulation of [3 H]tetraphenylphosphonium ions. Since tyrosine hydroxylase is inhibited by DA, this finding suggested that low assay buffer pH (i.e., pH 6.2) might interfere with the ability of 3-PPP and other DA agonists to inhibit DA synthesis, by promoting DA release. Likewise, reserpine and tetrabenazine, compounds which disrupt vesicular DA storage, were much less effective inhibitors of DA synthesis at pH 6.2 (high basal DA release). Moreover, d -amphetamine and high buffer potassium concentrations, treatments which promote DA release, also interfered with the ability of 3-PPP to inhibit DA synthesis. Thus, modulation of the release of DA in equilibrium with tyrosine hydroxylase may be a mechanism by which the DA autoreceptor regulates DA synthesis. 相似文献
9.
Nobuyuki Yanagihara Kenji Yokota Akihiko Wada Futoshi Izumi 《Journal of neurochemistry》1987,49(6):1740-1746
Incubation of cultured bovine adrenal medullary cells in Na+-free sucrose medium or in Na+-free Cs+ medium enhanced the synthesis of 14C-catecholamines from [14C]tyrosine about two- to threefold or sixfold, respectively. The increment of 14C-catecholamine synthesis produced by Na+-free medium was partially dependent on the presence of Ca2+ in the medium. Dibutyryl cyclic AMP also stimulated the synthesis of 14C-catecholamines in adrenal medullary cells, and the effects of Na+ removal and dibutyryl cyclic AMP (5 mM) on the synthesis were almost additive. The intracellular pH measured by using a weak acid 5,5-dimethyloxazolidine-2,4-dione was 7.14 in control cells and when Na+ was replaced by sucrose or Cs+, it shifted down to 6.56 or 5.66, respectively. The fall in intracellular pH and the stimulation of 14C-catecholamine synthesis were similarly dependent on the concentration of Na+ in the medium. The optimal pH of soluble tyrosine hydroxylase was 5.5-6.0 both in control cells and in cells incubated in Na+-free medium. These results suggest that removal of extracellular Na+ increases the synthesis of catecholamines, at least in part, by shifting the intracellular pH toward the optimal pH of tyrosine hydroxylase. 相似文献
10.
The distribution and relative proportions of neuropeptide Y (NPY)- and [Met]enkephalyl-Arg-Gly-Leu (ME-RGL)-containing sympathetic neurones in the rat superior cervical ganglion (SCG) and their projections to submaxillary lymph nodes (SLN) were determined by retrograde tracing and immunocytochemistry. Three subpopulations of neurones were detected in the SCG: 64% contained NPY, 30% contained ME-RGL, and 6% were immunonegative for both. Immunoreactive neurones were also present inside the external carotid nerve of the SCG. An injection of Fluoro-Gold (FG) into the left SLN retrogradely labeled a few neurones in the ipsilateral SCG. FG-labeled neurones contained tyrosine hydroxylase (TH) and were either positive for ME-RGL or for NPY. FG-labeled neurones immunostained for ME-RGL outnumbered by 4:1 FG-labeled neurones immunopositive for NPY. It is suggested that the sympathetic/peptidergic innervation to SLN may have distinct vasoregulatory and immunomodulatory functions. 相似文献
11.
Yutaka Nagata Masato Ando Masato Miwa Kanefusa Kato† 《Journal of neurochemistry》1984,43(5):1205-1212
Contents of the three forms (alpha alpha, alpha gamma, and gamma gamma) of enolase isozymes and S-100 protein in superior cervical sympathetic ganglia (SCG) excised from rats were determined by the sensitive method of enzyme immunoassay, after application of various forms of stimulation, during incubation for 3 h at 37 degrees C in vitro. The amounts of the three forms of enolase isozymes and of S-100 protein in the SCG were not altered by preganglionic or postganglionic stimulation (10 Hz) or by the addition of acetylcholine (1 mM) or a high concentration of K+ (70 mM) to the incubation medium. Norepinephrine (NE; 50 microM), as well as isoproterenol (200 microM) or 3,4-dihydroxy phenylethylamine (dopamine; 200 microM), increased the ganglionic alpha alpha and alpha gamma enolase content to 1.5 to 2.0 times the control level, whereas NE tended to slightly decrease the gamma gamma enolase content. The increase in the alpha isozymes did not appear until after 2 to 3 h of incubation with this agent as a result of an increase in protein synthesis. Propranolol, an adrenergic antagonist, partly inhibited the NE-induced increase in both alpha alpha and alpha gamma enolases. NE and its agonists also considerably increased the S-100 protein level in the SCG; however, the effect developed within half an hour of incubation as a result of the conversion of the bound S-100 protein to the water-soluble form, and did not greatly increase thereafter. Cyclic AMP (1 mM) produced the same kind of increase in the ganglionic S-100 protein content as NE did.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
SYNOPSIS DNA synthesis of intracellular Trypanosoma cruzi amastigotes, following the infection of bovine embryo skeletal muscle (BESM) cells, was studied by autoradiography. After penetration, there was a prereplicative lag period (∼12 h) followed by a synchronous round of DNA synthesis which was found to be independent of parasite number/BESM cell and the host cell DNA synthesis cycle. Parasite reproduction occurred, for the first time, at ∼ 21 h postinfection. It was concluded that T. cruzi trypomastigotes are in the G1 /G, phase of their cell division cycle and that after penetration parasite reproduction occurs independent of events controlling host cell DNA synthesis and growth. The early synchronous growth of intracellular amastigotes should facilitate further studies on the biochemical events controlling trypomastigote-to-amastigote transformation and amastigote reproduction. A further application is envisaged for studies on the mode of action of drugs with trypanocidal activity. 相似文献
13.
Vitrification of carnation in vitro: Changes in ethylene production,ACC level and capacity to convert ACC to ethylene 总被引:1,自引:0,他引:1
Carnation tissue was allowed to vitrify in liquid culture and ethylene production, ACC content and capacity to convert ACC to ethylene were measured in comparison to tissue developing normally on solid medium. Flask atmospheres of liquid cultures accumulated ethylene at a higher rate during the first four days. Daily ethylene production by vitrifying material decreased later. Ethylene emission by vitrifying tissues always remained above controls when subcultured daily to fresh medium. Explants and microsomal preparations from vitrifying carnations converted ACC to ethylene at a higher degree from the first day in liquid medium. ACC level markedly increased in vitrifying tissues during the first two days of liquid culture. Raising the level of ethylene in the atmosphere of solid cultures did not induce vitrification symptoms nor did use of inhibitors of ethylene biosynthesis in liquid cultures prevent the process. The role of ethylene in vitrification is reappraised. 相似文献