首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amyloid A4 or beta peptide is a major component of extracellular amyloid deposits that are a characteristic feature of Alzheimer's disease. We synthesized a series of peptide analogs of the A4/beta peptide which are progressively longer at their carboxyl termini, including 42- and 39-residue peptides which represent the major forms of the A4/beta peptide in senile plaque and the hereditary cerebral hemorrhage with amyloidosis form, respectively. All peptides tested, beta 1-28 through beta 1-42, formed amyloid-like fibrils and previously unreported thin sheet-like structures which stained with thioflavin T and Congo Red. The solubility of beta 1-42 and shorter peptides was pH and concentration dependent, with a broad insolubility profile in the pH range of 3.5-6.5 and at concentrations above 0.75 mg/ml. Only peptides of 42 residues or longer were significantly insoluble at pH 7.4. beta 1-47 and beta 1-52 peptides are highly insoluble in aqueous media but are soluble at 40 mg/ml in the alpha helix-promoting solvent, 1,1,1,3,3,3-hexafluoro-2-propanol. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the beta 1-42 peptide migrates as a series of higher molecular mass aggregates whereas shorter peptides migrate as monomers. Aggregation is also dependent on pH, peptide concentration, and time of incubation in aqueous medium. These results indicate that the length of the hydrophobic carboxyl terminus of the A4/beta peptide is important in determining the solubility and aggregation properties of the A4/beta peptide and that acid pH environment, high peptide concentration, and long incubation time would be predicted to be important factors in promoting amyloid deposition.  相似文献   

2.
A subset of Alzheimer disease cases is caused by autosomal dominant mutations in genes encoding the amyloid beta-protein precursor or presenilins. Whereas some amyloid beta-protein precursor mutations alter its metabolism through effects on Abeta production, the pathogenic effects of those that alter amino acid residues within the Abeta sequence are not fully understood. Here we examined the biophysical effects of two recently described intra-Abeta mutations linked to early-onset familial Alzheimer disease, the D7N Tottori-Japanese and H6R English mutations. Although these mutations do not affect Abeta production, synthetic Abeta(1-42) peptides carrying D7N or H6R substitutions show enhanced fibril formation. In vitro analysis using Abeta(1-40)-based mutant peptides reveal that D7N or H6R mutations do not accelerate the nucleation phase but selectively promote the elongation phase of amyloid fibril formation. Notably, the levels of protofibrils generated from D7N or H6R Abeta were markedly inhibited despite enhanced fibril formation. These N-terminal Abeta mutations may accelerate amyloid fibril formation by a unique mechanism causing structural changes of Abeta peptides, specifically promoting the elongation process of amyloid fibrils without increasing metastable intermediates.  相似文献   

3.
The role of amino acid sequence in conformational switching observed in prions and proteins associated with amyloid diseases is not well understood. To study alpha to beta conformational transitions, we designed a series of peptides with structural duality; namely, peptides with sequence features of both an alpha-helical leucine zipper and a beta-hairpin. The parent peptide, Template-alpha, was designed to be a canonical leucine-zipper motif and was confirmed as such using circular dichroism spectroscopy and analytical ultracentrifugation. To introduce beta-structure character into the peptide, glutamine residues at sites away from the leucine-zipper dimer interface were replaced by threonine to give Template-alphaT. Unlike the parent peptide, Template-alphaT underwent a heat-inducible switch to beta-structure, which reversibly formed gels containing amyloid-like fibrils. In contrast to certain other natural proteins where destabilization of the native states facilitate transitions to amyloid, destabilization of the leucine-zipper form of Template-alphaT did not promote a transformation. Cross-linking the termini of the peptides compatible with the alternative beta-hairpin design, however, did promote the change. Furthermore, despite screening various conditions, only the internally cross-linked form of the parent, Template-alpha, peptide formed amyloid-like fibrils. These findings demonstrate that, in addition to general properties of the polypeptide backbone, specific residue placements that favor beta-structure promote amyloid formation.  相似文献   

4.
We reported previously that stabilized beta-amyloid peptide dimers were derived from mutant amyloid precursor protein with a single cysteine in the ectodomain juxtamembrane position. In vivo studies revealed that two forms of SDS-stable A beta homodimers exist, species ending at A beta 40 and A beta 42. The phenomenon of the transformation of the initially deposited 42-residue beta-amyloid peptide into the amyloid fibrils of Alzheimer's disease plaques remains to be explained in physical terms, i.e. energetically and structurally. We therefore performed spectroscopic analyses revealing that engineered dimeric peptides ending at residue 42 displayed a much more pronounced beta-structural transition than corresponding monomers. Specifically, the single chemically induced dimerization of A beta peptides significantly increased the beta-sheet content by a factor of 2. The C-terminal residues Ile-41 and Ala-42 of dimeric forms further increased the beta-sheet content by roughly one-third. In contrast to A beta 42, the beta-sheet content of the alpha- and gamma-secretase-generated p3 fragments did not necessarily correlate with the tendency to form fibrils, although p3/17-42 had a pronounced thread forming character with fibril lengths of up to 2.5 microM. Electron microscopic images show that forms of p3/17-42 generated smaller granular particles than forms ending at residue 40. We discuss these findings in terms of A beta 1-42 dimers representing paranuclei, which self-aggregate into ribbon-like ordered fibrils by elongation. Based on A beta 42 dimer-specific titers of a polyclonal antiserum we propose that the A beta homodimer represents a nidus for plaque formation and a well defined novel therapeutic target.  相似文献   

5.
Two synthetic peptides corresponding to the reported 28-residue sequence of Alzheimer's Disease beta-protein (SP28) and to residues 12-28 (SP17) were used to form fibrils in vitro. Synthetic fibrils bound Congo Red and closely resembled amyloid fibrils isolated from leptomeninges and senile plaques of Alzheimer's brain by electron microscopy. A polyclonal antiserum to SP28 specifically decorated both synthetic and native amyloid by colloidal gold immunoelectron microscopy. Amyloid fibrils isolated from tissue were insoluble on SDS-Polyacrylamide gels, and tended to aggregate while synthetic amyloid fibrils were completely solubilized, releasing only monomers of SP28 and SP17. Anti-SP28 immunostained cerebrovascular and plaque core amyloid, but not neurofibrillary tangles, in tissue section. Western blot analysis showed that anti-SP28 reacted with a 4 kDa band released from amyloid core-enriched preparations and leptomeninges. By contrast, a 16 kDa band corresponding to the tetramer of beta-protein was not recognized. These data suggest that as little as a 17 residue sequence of beta-protein may be required to form fibrils and that the complete sequence of the 4 kDa beta-protein may be important in determining insolubility and the formation of intermediate size polymers.  相似文献   

6.
We have proposed that amyloid fibrils contain subunits (protofibrils) that are formed from beta-strands wound into continuous 2-3 nm-diameter beta-helices. Subsequent lateral aggregation of the beta-helices to form the widely observed 5-12 nm-diameter fibrils could be promoted by hydrophobic residues on the exterior of the postulated beta-helix. A number of short peptide fragments of the amyloid-beta (A beta) proteins, such as A beta34-42 [LMVGGVVIA], the nine-residue, carboxyl-terminal portion of A beta1-42, can also form amyloid fibrils. In the present study, it was found that a beta-helix formed from A beta34-42 accounts for features suggested by published rotational resonance solid-state NMR data, including an anomalous conformation about the Gly-37-Gly-38 region and exaggerated pleating. An analogue of A beta34-42 was synthesized in which the hydrophobic groups on the exterior of the postulated beta-helix were replaced with glutamates, giving LEVGGVEIE. The analogue was completely soluble at pH 7, but at pH 2.5 it produced 2-2.5 nm-diameter fibrils which did not associate into larger-diameter bundles. The results of this study support the proposal that amyloid fibrils are formed from beta-helical subunits.  相似文献   

7.
The molecular basis of fibril formation in Alzheimers disease was explored by electron micrographic and x-ray diffraction analysis of a series of synthetic peptides corresponding to portions of the amino acid sequence of beta protein and that of its putative precursor. A minimum 14 residue peptide was identified that formed typical amyloid fibrils under physiological conditions. Of these 14 residues, 10 were sufficient to give an identical 4.76 A and 10.6 A diffraction pattern as that recently described for isolated neurofibrillary tangles, amyloid plaque cores and leptomeningeal amyloid fibrils.  相似文献   

8.
Human beta(2)-microglobulin (beta(2)m) forms amyloid fibrils in hemodialysis related amyloidosis. Peptides spanning the beta strands of beta(2)m have been shown to form amyloid fibrils in isolation. We have studied the self-association of a 13-residue peptide Ac-DWSFYLLYYTEFT-am (Pbeta(2)m) spanning one of the beta-strands of human beta(2)-microglobulin when dissolved in various organic solvents such as methanol (MeOH), trifluoroethanol (TFE), hexafluoroisopropanol (HFIP), and dimethylsulfoxide. We have observed that Pbeta(2)m forms amyloid fibrils when diluted from organic solvents into aqueous buffer at pH 7.0 as judged by increase in thioflavin T fluorescence. Fibril formation was observed to depend on the solvents in which peptide stock solutions were prepared. Circular dichroism spectra indicated propensity for helical conformation in MeOH, TFE, and HFIP. In buffer, beta-structure was observed irrespective of the solvent in which the peptide stock solutions were prepared. Atomic force microscopy images obtained by drying the peptide on mica from organic solvents indicated the ability of Pbeta(2)m to self-associate to form nonfibrillar structures. Morphology of the structures was dependent on the solvent in which the peptide was dissolved. Peptides that have the ability to self-associate such as amyloid-forming peptides would be attractive candidates for the generation of self-assembled structures with varying morphologies by appropriate choice of surfaces and solvents for dissolution.  相似文献   

9.
Beta(2)-Microglobulin (beta(2)m) is one of over 20 proteins known to be involved in human amyloid disease. Peptides equivalent to each of the seven beta-strands of the native protein, together with an eighth peptide (corresponding to the most stable region in the amyloid precursor conformation formed at pH 3.6, that includes residues in the native strand E plus the eight succeeding residues (named peptide E')), were synthesised and their ability to form fibrils investigated. Surprisingly, only two sequences, both of which encompass the region that forms strand E in native beta(2)m, are capable of forming amyloid-like fibrils in vitro. These peptides correspond to residues 59-71 (peptide E) and 59-79 (peptide E') of intact beta(2)m. The peptides form fibrils under the acidic conditions shown previously to promote amyloid formation from the intact protein (pH <5 at low and high ionic strength), and also associate to form fibrils at neutral pH. Fibrils formed from these two peptides enhance fibrillogenesis of the intact protein. No correlation was found between secondary structure propensity, peptide length, pI or hydrophobicity and the ability of the peptides to associate into amyloid-like fibrils. However, the presence of a relatively high content of aromatic side-chains correlates with the ability of the peptides to form amyloid fibrils. On the basis of these results we propose that residues 59-71 may be important in the self-association of partially folded beta(2)m into amyloid fibrils and discuss the relevance of these results for the assembly mechanism of the intact protein in vitro.  相似文献   

10.
An efficient 'O-acyl isopeptide method' for the synthesis of difficult sequence-containing peptides was applied successfully to the synthesis of amyloid beta peptide (Abeta) 1-42 via a water-soluble O-acyl isopeptide of Abeta1-42, i.e. '26-O-acyl isoAbeta1-42' (6). This paper describes the detailed synthesis of Abeta1-42 focusing on the importance of resin selection and the analysis of side reactions in the O-acyl isopeptide method. Protected '26-O-acyl isoAbeta1-42' peptide resin was synthesized using 2-chlorotrityl chloride resin with minimum side reactions in comparison with other resins and deprotected crude 26-O-acyl isoAbeta1-42 was easily purified by HPLC due to its relatively good purity and narrow elution with reasonable water solubility. This suggests that only one insertion of the isopeptide structure into the sequence of the 42-residue peptide can suppress the unfavourable nature of its difficult sequence. The migration of O-acyl isopeptide to intact Abeta1-42 under physiological conditions (pH 7.4) via O--N intramolecular acyl migration reaction was very rapid and no other by-product formation was observed while 6 was stable under storage conditions. These results concluded that our strategy not only overcomes the solubility problem in the synthesis of Abeta1-42 and can provide intact Abeta1-42 efficiently, but is also applicable in the synthesis of large difficult sequence-containing peptides at least up to 50 amino acids. This synthesis method would provide a biological evaluation system in Alzheimer's disease research, in which 26-O-acyl isoAbeta1-42 can be stored in a solubilized form before use and then rapidly produces intact Abeta1-42 in situ during biological experiments.  相似文献   

11.
Electron paramagnetic resonance spectroscopy analysis of 19 spin-labeled derivatives of the Alzheimer's amyloid beta (Abeta) peptide was used to reveal structural features of amyloid fibril formation. In the fibril, extensive regions of the peptide show an in-register, parallel arrangement. Based on the parallel arrangement and side chain mobility analysis we find the amyloid structure to be mostly ordered and specific, but we also identify more dynamic regions (N and C termini) and likely turn or bend regions (around residues 23-26). Despite their different aggregation properties and roles in disease, the two peptides, Abeta40 and Abeta42, homogeneously co-mix in amyloid fibrils suggesting that they possess the same structural architecture.  相似文献   

12.
beta-Amyloid peptide is the major protein component of senile plaques and cerebrovascular amyloid deposits in patients with Alzheimer's disease. The peptide deposits extracellularly in the form of amyloid fibrils, in a cross-beta conformation. beta-amyloid peptide is a 39- to 43-residue segment of a normal membrane precursor protein. In this work, a peptide homologous to the first 40 amino acids of beta-amyloid peptide, beta(1-40), was synthesized and characterized. beta(1-40) exhibited a sharp change in solubility near physiological pH and gel formation at concentrations of 3 mg/ml or greater. Circular dichroism indicated that beta(1-40) contained approximately two-thirds beta-structure, but no alpha-helical character. Quasi-elastic and classical light scattering measurements showed that beta(1-40) aggregated end-to-end in solution, reaching average molecular weights greater than 4 x 10(6) after 13 days. The aggregates were best modeled as rigid rods of 5 nm diameter, similar to the diameter of amyloid fibrils purified from plaques. A mathematical model based on diffusion-limited aggregation was developed to describe the kinetics of aggregation.  相似文献   

13.
Mass spectrometry of purified amyloid beta protein in Alzheimer's disease.   总被引:7,自引:0,他引:7  
The amyloid beta-protein (A beta) that is progressively deposited in Alzheimer's disease (AD) arises from proteolysis of the integral membrane protein, beta-amyloid precursor protein (beta APP). Although A beta formation appears to play a seminal role in AD, only a few studies have examined the chemical structure of A beta purified from brain, and there are discrepancies among the findings. We describe a new method for the rapid extraction and purification of A beta that minimizes artifactual proteolysis. A beta purified by two-dimensional reverse-phase HPLC was analyzed by combined amino acid sequencing and mass spectrometry after digestion with a lysylendopeptidase. The major A beta peptide in the cerebral cortex of all five AD brains examined was aspartic acid 1 to valine 40. A minor species beginning at glutamic acid 3 but blocked by conversion to pyroglutamate was also found in all cases. A species ending at threonine 43 was detected, varying from approximately 5 to 25% of total A beta COOH-terminal fragments. Peptides ending with valine 39, isoleucine 41, or alanine 42 were not detected, except for one brain with a minor peptide ending at valine 39. Our findings suggest that A beta 1-40 is the major species of beta-protein in AD cerebral cortex. A beta 1-40 and A beta 1-43 peptides could arise independently from beta APP, or A beta 1-43 could be the initial excised fragment, followed by digestion to yield A beta 1-40. These analyses of native A beta in AD brain recommend the use of synthetic A beta 1-40 peptide to model amyloid fibrillogenesis and toxicity in vitro.  相似文献   

14.
We have studied the model peptides that undergo self-initiated structural transition from alpha-helix to beta-sheet and self-assembling into amyloid fibrils. We here constructed an inhibition system of amyloid formation utilizing homologous recognition and assembly of peptides with increased solubility. Among 20 peptides with homologous sequences examined here, cationic peptides showed the stronger inhibition ability against the amyloid formation of a model peptide.  相似文献   

15.
Seeding specificity in amyloid growth induced by heterologous fibrils   总被引:5,自引:0,他引:5  
Over residues 15-36, which comprise the H-bonded core of the amyloid fibrils it forms, the Alzheimer's disease plaque peptide amyloid beta (Abeta) possesses a very similar sequence to that of another short, amyloidogenic peptide, islet amyloid polypeptide (IAPP). Using elongation rates to quantify seeding efficiency, we inquired into the relationship between primary sequence similarity and seeding efficiency between Abeta-(1-40) and amyloid fibrils produced from IAPP as well as other proteins. In both a solution phase and a microtiter plate elongation assay, IAPP fibrils are poor seeds for Abeta-(1-40) elongation, exhibiting weight-normalized efficiencies of only 1-2% compared with Abeta-(1-40) fibrils. Amyloid fibrils of peptides with sequences completely unrelated to Abeta also exhibit poor to negligible seeding ability for Abeta elongation. Fibrils from a number of point mutants of Abeta-(1-40) exhibit intermediate seeding abilities for wild-type Abeta elongation, with differing efficiencies depending on whether or not the mutation is in the amyloid core region. The results suggest that amyloid fibrils from different proteins exhibit structural differences that control seeding efficiencies. Preliminary results also suggest that identical sequences can grow into different conformations of amyloid fibrils as detected by seeding efficiencies. The results have a number of implications for amyloid structure and biology.  相似文献   

16.
Proteoglycans and their constituent glycosaminoglycans are associated with all amyloid deposits and may be involved in the amyloidogenic pathway. In Alzheimer's disease, plaques are composed of the amyloid-beta peptide and are associated with at least four different proteoglycans. Using CD spectroscopy, fluorescence spectroscopy and electron microscopy, we examined glycosaminoglycan interaction with the amyloid-beta peptides 1-40 (Abeta40) and 1-42 (Abeta42) to determine the effects on peptide conformation and fibril formation. Monomeric amyloid-beta peptides in trifluoroethanol, when diluted in aqueous buffer, undergo a slow random to amyloidogenic beta sheet transition. In the presence of heparin, heparan sulfate, keratan sulfate or chondroitin sulfates, this transition was accelerated with Abeta42 rapidly adopting a beta-sheet conformation. This was accompanied by the appearance of well-defined amyloid fibrils indicating an enhanced nucleation of Abeta42. Incubation of preformed Abeta42 fibrils with glycosaminoglycans resulted in extensive lateral aggregation and precipitation of the fibrils. The glycosaminoglycans differed in their relative activities with the chondroitin sulfates producing the most pronounced effects. The less amyloidogenic Abeta40 isoform did not show an immediate structural transition that was dependent upon the shielding effect by the phosphate counter ion. Removal or substitution of phosphate resulted in similar glycosaminoglycan-induced conformational and aggregation changes. These findings clearly demonstrate that glycosaminoglycans act at the earliest stage of fibril formation, namely amyloid-beta nucleation, and are not simply involved in the lateral aggregation of preformed fibrils or nonspecific adhesion to plaques. The identification of a structure-activity relationship between amyloid-beta and the different glycosaminoglycans, as well as the condition dependence for glycosaminoglycan binding, are important for the successful development and evaluation of glycosaminoglycan-specific therapeutic interventions.  相似文献   

17.
To obtain insight into the mechanism of amyloid fibril formation from beta(2)-microglobulin (beta2-m), we prepared a series of peptide fragments using a lysine-specific protease from Achromobacter lyticus and examined their ability to form amyloid fibrils at pH 2.5. Among the nine peptides prepared by the digestion, the peptide Ser(20)-Lys(41) (K3) spontaneously formed amyloid fibrils, confirmed by thioflavin T binding and electron microscopy. The fibrils composed of K3 peptide induced fibril formation of intact beta2-m with a lag phase, distinct from the extension reaction without a lag phase observed for intact beta2-m seeds. Fibril formation of K3 peptide with intact beta2-m seeds also exhibited a lag phase. On the other hand, the extension reaction of K3 peptide with the K3 seeds occurred without a lag phase. At neutral pH, the fibrils composed of either intact beta2-m or K3 peptide spontaneously depolymerized. Intriguingly, the depolymerization of K3 fibrils was faster than that of intact beta2-m fibrils. These results indicated that, although K3 peptide can form fibrils by itself more readily than intact beta2-m, the K3 fibrils are less stable than the intact beta2-m fibrils, suggesting a close relation between the free energy barrier of amyloid fibril formation and its stability.  相似文献   

18.
N-Ointramolecular acyl migration in Ser- or Thr-containing peptides is a well-known side reaction in peptide chemistry. It results in the mutual conversion of ester and amide bonds. Our medicinal chemistry study focused on the fact that the O-acyl product can be readily converted to the original N-acyl form under neutral or slightly basic conditions in an aqueous buffer and the liberated ionized amino group enhances the water solubility of O-acyl products. Because of this, we have developed a novel class of "O-N intramolecular acyl migration"-type water-soluble prodrugs of HIV-1 protease inhibitors. These prodrugs released the parent drugs via a simple chemical mechanism with no side reaction. In this study, we applied this strategy to important cancer chemotherapeutic agents, paclitaxel and its derivatives, to develop water-soluble taxoid prodrugs, and found that these prodrugs, 2'-O-isoform of taxoids, showed promising results with higher water solubility and proper kinetics in their parent drug formation by a simple pH-dependent chemical mechanism with O-N intramolecular acyl migration. These results suggest that this strategy would be useful in toxicology and medical economics. After the successful application of O-N intramolecular acyl migration in medicinal chemistry, this concept was recently used in peptide chemistry for the synthesis of "difficult sequence-containing peptides." The strategy was based on hydrophilic O-acyl isopeptide synthesis followed by the O-N intramolecular acyl migration reaction, leading to the desired peptide. In a model study with small, difficult sequence-containing peptides, synthesized "O-acyl isopeptides" not only improved the solubility in various media and efficiently performed the high performance liquid chromatography purification, but also altered the nature of the difficult sequence during SPPS, resulting in the efficient synthesis of O-acyl isopeptides with no complications. The subsequent O-N intramolecular acyl migration of purified O-acyl isopeptides afforded the desired peptides as precipitates with high yield and purity. Further study of the synthesis of a larger difficult sequence-containing peptide, Alzheimer's disease-related peptide (A beta 1-42), surprisingly showed that only one insertion of the O-acyl group drastically improved the unfavorable nature of the difficult sequence in A beta 1-42, and achieved efficient synthesis of 26-O-acyl isoA beta 1-42 and subsequent complete conversion to A beta 1-42 via the O-N intramolecular acyl migration reaction of 26-O-acyl isoA beta 1-42. This suggests that our new method based on O-N intramolecular acyl migration is an important method for the synthesis of difficult sequence-containing bioactive peptides.  相似文献   

19.
Shivaprasad S  Wetzel R 《Biochemistry》2004,43(49):15310-15317
Most models for the central cross-beta folding unit in amyloid fibrils of the Alzheimer's plaque protein Abeta align the peptides in register in H-bonded, parallel beta-sheet structure. Some models require the Abeta peptide to undergo a chain reversal when folding into the amyloid core, while other models feature very long extended chains, or zigzag chains, traversing the protofilament. In this paper we introduce the use of disulfide bond cross-linking to probe the fold within the core and the packing interactions between beta-sheets. In one approach, amyloid fibrils grown under reducing conditions from each of three double cysteine mutants (17/34, 17/35, and 17/36) of the Abeta(1-40) sequence were subjected to oxidizing conditions. Of these three mutants, only the Leu17Cys/Leu34Cys peptide could be cross-linked efficiently while resident in fibrils. In another approach, double Cys mutants were cross-linked as monomers before aggregation, and the resulting fibrils were assessed for stability, antibody binding, dye binding, and cross-seeding efficiency. Here too, fibrils from the 17/34 double Cys mutant most closely resemble wild-type Abeta(1-40) fibrils. These data support models of the Abeta fibril in which the Leu17 and Leu34 side chains of the same peptide pack against each other at the beta-sheet interface within the amyloid core. Related cross-linking strategies may reveal longer range spatial relationships. The ability of the cross-linked 17/35 double Cys mutant Abeta to also make amyloid fibrils illustrates a remarkable plasticity of the amyloid structure and suggests a structural mechanism for the generation of conformational variants of amyloid.  相似文献   

20.
J T Jarrett  P T Lansbury 《Biochemistry》1992,31(49):12345-12352
The sequence of the Escherichia coli OsmB protein was found to resemble that of the C-terminal region of the beta amyloid protein of Alzheimer's disease, which seems to be the major determinant of its unusual structural and solubility properties. A peptide corresponding to residues 28-44 of the OsmB protein was synthesized, and its conformational properties and aggregation behavior were analyzed. The peptide OsmB(28-44) was shown to form amyloid fibrils, as did two sequence analogs designed to test the sequence specificity of fibril formation. These fibrils bound Congo red, and two of the peptides showed birefringence. The peptide fibrils were analyzed by electron microscopy and Fourier transform infrared spectroscopy. Subtle differences were observed which were not interpretable at the molecular level. The rate of fibril formation by each peptide was followed by monitoring the turbidity of supersaturated aqueous solutions. The kinetics of aggregation were characterized by a delay period during which the solution remained clear, followed by a nucleation event which led to a growth phase, during which the solution became viscous and turbid due to the presence of insoluble fibrils. The observation of a kinetic barrier to aggregation is typical of a crystallization event. The delay period could be eliminated by seeding the supersaturated solution with previously formed fibrils. Each peptide could be nucleated by fibrils formed from that same peptide, but not by fibrils from closely related sequences, suggesting that fibril growth requires specific hydrophobic interactions. It appears likely that this repeated sequence motif, which comprises most of the OsmB protein sequence, dictates the structure and possibly the function of that protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号