首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Food consumption, growth and the ability to withstand starvation were studied in two species of predominantly piscivorous predatory lionfishes from the Gulf of Aqaba, Red Sea: Dendrochirus brachypterus a small-bodied species, 35–40 g body weight, and Pterois volitans, 1.10–1.20 kg body weight. In experimental conditions, the biomass consumed by D. brachypterus was 0.8–1.1 g day-1 in juveniles of 10–20 g body weight and 3.0–5.0 g day-1 in adults of 35–40 g. P. volitans consumed 5.5–13.5 g day-1 as juveniles, and 14.6 g day-1 when adults of 300–500 g body weight. The growth trajectories of both species are parallel until they attain 20–25 g body weight. From this point on, growth in the maturing D. brachypterus nears asymptotic, while Pterois continue their exponential increase up to 70–80 g body weight. With age, the efficiency of food conversion, indexed by the condition (K) factor, is low (from 0.46 in young fish to 0.22 in adults), as most of their food energy is channeled towards maintenance. In nature, larger Pterois of 300–400 g body weight, consume about 8.5 g day-1, amounting to 3.10 kg yr-1; for 80 fish inhabiting a 1 km long reef, this totals approximately 228.48 kg yr-1. Starvation experiments in these fishes produced a clear correlation between their initial weight and their ability to withstand prolonged fasting: D. brachypterus lost 12–33% body weight within 7 weeks, and the larger Pterois lost only 5–16% within 3 months. I discuss the advantages and disadvantages of early maturation as well as small size versus large size, and delayed maturation in these two closely-related predatory fishes. Experiments with naive adult lionfish showed that their selection of prey species is a learned process, vital to survival during growth in the prey-fishes' rich habitat of coral reefs.  相似文献   

2.
Summary Water and sodium turnovers of 6–7 week old gentoo penguin chicks and breeding adults were measured using isotopically labelled water and sodium. Influx rates for chicks averaged 188 ml·kg-1·day-1 and 13.9 mmol·kg-1·day-1 for water and sodium, respectively. Chicks consumed an estimated 228 g·kg-1·day-1 fresh food or 886 kJ kg-1 day. These values correspond to 761 g·day-1 or 2945 kJ·day-1 for a gentoo chick mid-way through the growth period. Flux rates for adults attending chicks ranged from 199 to 428 ml·kg-1·day-1 for water and from 15 to 36 mmol·kg-1·ay-1 for sodium.  相似文献   

3.
Generally, young growing mammals have resting metabolic rates (RMRs) that are proportionally greater than those of adult animals. This is seen in the red kangaroo (Macropus rufus), a large (>20 kg) herbivorous marsupial common to arid and semi-arid inland Australia. Juvenile red kangaroos have RMRs 1.5–1.6 times those expected for adult marsupials of an equivalent body mass. When fed high-quality chopped lucerne hay, young-at-foot (YAF) kangaroos, which have permanently left the mother's pouch but are still sucking, and recently weaned red kangaroos had digestible energy intakes of 641±27 kJ kg–0.75 day–1 and 677±26 kJ kg–0.75 day–1, respectively, significantly higher than the 385±37 kJ kg–0.75 day–1 ingested by mature, non-lactating females. However, YAF and weaned red kangaroos had maintenance energy requirements (MERs) that were not significantly higher than those of mature, non-lactating females, the values ranging between 384 kJ kg–0.75 day–1 and 390 kJ kg–0.75 day–1 digestible energy. Importantly, the MER of mature female red kangaroos was 84% of that previously reported for similarly sized, but still growing, male red kangaroos. Growth was the main factor affecting the proportionally higher energy requirements of the juvenile red kangaroos relative to non-reproductive mature females. On a good quality diet, juvenile red kangaroos from permanent pouch exit until shortly after weaning (ca. 220–400 days) had average growth rates of 55 g body mass day–1. At this level of growth, juveniles had total daily digestible energy requirements (i.e. MER plus growth energy requirements) that were 1.7–1.8 times the MER of mature, non-reproductive females. Our data suggest that the proportionally higher RMR of juvenile red kangaroos is largely explained by the additional energy needed for growth. Energy contents of the tissue gained by the YAF and weaned red kangaroos during growth were estimated to be 5.3 kJ g–1, within the range found for most young growing mammals.Abbreviations BMR basal metabolic rate - DEI digestible energy intake - MER maintenance energy requirement - MERg maintenance plus growth energy requirement - PPE permanent pouch exit - RMR resting metabolic rate - YAF young-at-foot Communicated by I.D. Hume  相似文献   

4.
Synopsis The relationships between food availability, consumption and growth were analyzed from the onset of feeding to an age of 90 days in three cyprinid species. Fish were held at 20 ± 0.5° C and given two (three) constant rations of approximately 30, (40) or 100% dry body weight (dbw) ind-1 day-1. Food consisted of living zooplankton, the size of which correlated with fish size. At high food densities consumption rates decreased rapidly with fish size in all three species. At reduced rations, fish consumed most of the food offered until they were larger than 10 mg dbw. In all species and at each feeding level daily rations consumed increased allometrically with body size. Respiration rate, expressed as routine metabolic rate differed insignificantly between the three species. At high ration levels, growth rates of small bleak, Alburnus alburnus, were distinctly lower than those of roach, Rutilus rutilus, and blue bream, Abramis ballerus. At low food supply all three species grew at similar rates. Assimilation efficiency at low food conditions was approximately twice that of the well-fed groups. If the caloric equivalents of oxygen consumption as measured in well-fed fish are applied to fish fed at low rations their energy budgets do not balance. This indicates the limitations of fish larvae in the partitioning of energy for growth or activity at such conditions.  相似文献   

5.
The metabolism of 52–73-day old Antarctic fur seal pups from Bird Island, South Georgia, was investigated during fasting periods of normal duration while their mothers were at sea foraging. Body mass decreased exponentially with pups losing 3.5–3.8% of body mass per day. Resting metabolic rate also decreased exponentially from 172–197 ml (O2)·min−1 at the beginning of the fast and scaled to Mb0.74 at 2.3 times the level predicted for adult terrestrial mammals of similar size. While there was no significant sex difference in RMR, female pups had significantly higher (F1,18=6.614, P<0.019) mass-specific RMR than male pups throughout the fasting period. Fasting FMR was also significantly (t15=2.37, P<0.035) greater in females (823 kJ·kg−1·d−1) than males (686 kJ·kg−1·d−1). Average protein turnover during the study period was 19.3 g·d−1 and contributed to 5.4% of total energy expenditure, indicating the adoption of a protein-sparing strategy with a reliance on primarily lipid catabolism for metabolic energy. This is supported by observed decreases in plasma BUN, U/C, glucose and triglyceride concentrations, and an increase in β-HBA concentration, indicating that Antarctic fur seals pups adopt this strategy within 2–3 days of fasting. Mean RQ also decreased from 0.77 to 0.72 within 3 days of fasting, further supporting a rapid commencement of protein-sparing. However, RQ gradually increased thereafter to 0.77, suggesting a resumption of protein catabolism which was not substantiated by changes in plasma metabolites. Female pups had higher TBL (%) than males for any given mass, which is consistent with previous findings in this and other fur seal species, and suggests sex differences in metabolic fuel use. The observed changes in plasma metabolites and protein turnover, however, do not support this.  相似文献   

6.
In this study we document growth, milk intake and energy consumption in nursing pups of icebreeding grey seals (Halichoerus grypus). Change in body composition of the pups, change in milk composition as lactation progresses, and mass transfer efficiency between nursing mothers and pups are also measured. Mass transfer efficiency between mother-pup pairs (n=8) was 42.5±8.4%. Pups were gaining a daily average of 2.0±0.7 kg (n=12), of which 75% was fat, 3% protein and 22% water. The total water influx was measured to be 43.23±8.07 ml·kg-1·day-1. Average CO2 production was 0.85±0.20 ml·g-1·h-1, which corresponds to a field metabolic rate of 0.55±0.13 MJ·kg-1·day-1, or 4.5±0.9 times the predicted basal metabolic rate based on body size (Kleiber 1975). Water and fat content in the milk changed dramatically as lacation progressed. At day 2 of nursing, fat and water content were 39.5±1.9% and 47.3±1.5%, respectively, while the corresponding figures for day 15 were 59.6±3.6% fat and 28.4±2.6% water. Protein content of the milk remained relatively stable during the lactation period with a value of 11.0±0.8% at day 2 and 10.4±0.3% at day 15. Pups drank an average of 3.5±0.9 kg of milk daily, corresponding to a milk intake of 1.75 kg per kg body mass gained. The average daily energy intake of pups was 82.58±19.80 MJ, while the energy built up daily in the tissue averaged 61.72±22.22 MJ. Thus, pups assimilated 74.7% of the energy they received via milk into body tissue. The lactation energetics of ice-breeding grey seals is very similar to that of their land-breeding counterparts.Abbreviations bm body mass - BMR basal metabolic rate - FMR field metabolic rate - IU international unit - RQ respiration quotient - HTO tritiated water - HT18O doubly labeled water - TBW total body water - VHF very high frequency  相似文献   

7.
The effects of bioventing, nutrient addition and inoculation with an oil-degrading bacterium on biodegradation of diesel oil in unsaturated soil were investigated. A mesocosm system was constructed consisting of six soil compartments each containing 6 m3 of naturally contaminated soil mixed 11 with silica sand, resulting in a diesel oil content of approximately 2000 mg kg–1. Biodegradation was monitored over 112 days by determining the actual diesel oil content of the soil and by respirometric tests. The best agreement between calculations of degradation rates based upon the two methods was in July, when venting in combination with nutrient addition resulted in degradation rates of 23 mg kg–1 day–1 based on actual oil concentration in the soil and 33 mg kg–1 day–1 calculated from respirometric data. In September, these rates decreased to 9 and 1.4 mg kg–1 day–1, and in October the degradation rates were 5 and 0.7 mg kg–1 day–1 based upon the two methods. The average ambient temperature during the respirometric tests was 14,10 and 2°C in July, September and October, respectively. The combination of venting and nutrient addition resulted in an average residual oil content of the soil of 380 mg kg–1. Neither venting alone nor inoculation enhanced oil degradation. The respiratory quotient averaged 0.40. The oil composition changed following degradation resulting in the unresolved complex mixture constituting up to 96% of the total oil content at the end of the experimental period.  相似文献   

8.
Ammonia-nitrogen excretion in Daphnia pulex   总被引:3,自引:2,他引:1  
Ammonia-nitrogen excretion rates were measured in natural summer and cultured populations of Daphnia pulex from Silver Lake, Clay County, Minnesota, USA during 1973. The mean rate of ammonia-nitrogen excretion for the summer populations was 0.20 µg N animal–1 day–1 or 5.11 µg N mg–1 dry body weight day–1 (N = 80) measured at 15°, 20°, and 25°C. These rates appear to be temperature and weight dependent, but they are probably affected by factors other than temperature and dry body weight. Ammonia-nitrogen excretion rates of Daphnia pulex cultured on Chlamydomonas reinhardi yielded the following relationship with temperature: Log10E = (0.061) T 1.773, where E is µg N animal–1 day–1 and T is temperature °C. The ammonia-nitrogen excretion on a mg–1 dry body weight day–1 basis was related to temperature according to the following similar expression Log10E = (0.043) T + 0.153, where E is µg N mg–1 dry body weight day–1, and T is temperature °C. The length-weight relationship of Daphnia pulex for the summer populations (N = 1583) was log10W = (0.526) Log10L + 1.357, where W is weight in µg and L is length in mm.  相似文献   

9.
Summary The mineralization of 14C-labelled naphthalene was studied in pristine and oil-contaminated soil slurry (30% solids) under denitrifying conditions using a range of concentrations from below to above the aqueous phase saturation level. Results from sorption-desorption experiments indicated that naphthalene desorption was highly irreversible and decreased with an increase in the soil organic content, thus influencing the availability for microbial consumption. Under denitrifying conditions, the mineralization of naphthalene to CO2 occurred in parallel with the consumption of nitrate and an increase in pH from 7.0 to 8.6. When the initial substrate concentration was 50 ppm (i.e. close to the aqueous phase saturation level), about 90% of the total naphthalene was mineralized within 50 days, and a maximum mineralization rate of 1.3 ppm day–1 was achieved after a lag period of approx. 18 days. When added at concentrations higher than the aqueous phase saturation level (200 and 500 ppm), similar mineralization rates (1.8 ppm day–1) occurred until about 50 ppm of the naphthalene was mineralized. After that the mineralization rates decreased logarithmically to a minimum of 0.24 ppm day–1 for the rest of the 160 days of the experiments. For both of these higher concentrations, the reaction kinetics were independent of the concentration, indicating that desorption of the substrate governs the mineralization rate. Other results indicated that pre-exposure of soil to oil contamination did not improve the degradation rates nor reduce the lag periods. This study clearly shows the potential of denitrifying conditions for the biodegradation of low molecular weight PAHs. Offprint requests to: R. Samson  相似文献   

10.
The degradation of xylan during methane fermentation proceeded as a first-order reaction. The rate constants were calculated to be 0.40–0.09 day–1 at 37° C and 0.341 day–1 at 55° C. From calculations based on the experimental data, K A and C A values in the expression of the velocity of xylose consumption changed as the fermentation progressed. In the mesophilic fermentation, the degradation of xylan slowed down after 2 days of incubation, but the rate of consumption of xylose increased between days 3 and 4 of incubation and slow again at the 5th day of incubation. In the thermophilic fermentation, the degradation of xylan proceeded at a constant rate and the rate of consumption of xylose increased slightly on the 3rd day of incubation. When the velocity of gas evolution was determined, the C G value for acetate at 55° C was about 1.8 times larger than the value at 37° C.  相似文献   

11.
The field metabolic rates (FMR) and rates of water flux were measured in two species of varanid lizards over five periods of the year in tropical Australia. The energetics of these species were further investigated by directly measuring activity (locomotion) and body temperatures of free-ranging animals by radiotelemetry, and by measuring standard metabolic rate (over a range of body temperatures) and activity metabolism in the laboratory. Seasonal differences in the activity and energetics were found in these goannas despite similar, high daytime temperatures throughout the year in tropical Australia. Periods of inactivity were associated with the dry times of the year, but the onset of this period of inactivity differed with respect to habitat even within the same species. Varanus gouldii, which inhabit woodlands only, were inactive during the dry and late dry seasons. V. panoptes that live in the woodland had a similar seasonal pattern of activity, but V. panoptes living near the floodplain of the South Alligator River had their highest levels of activity during the dry season when they walked long distances to forage at the receding edge of the floodplain. However, during the late dry season, after the floodplain had dried completely, they too became inactive. For V. gouldii, the rates of energy expenditure were 196 kJ kg–1 day–1 for active animals and 66 kJ kg–1 day–1 for inactive animals. The rates of water influx for these groups were respectively 50.7 and 19.5 ml kg–1 day–1. For V. panoptes, the rates of energy expenditure were 143 kJ kg–1 day–1 for active animals and 56 kJ kg–1 day–1 for inactive animals. The rates of water influx for these two groups were respectively 41.4 and 21.0 ml kg–1 day–1. We divided the daily energy expenditure into the proportion of energy that lizards used when in burrows, out of burrows but inactive, and in locomotion for the two species during the different seasons. The time spent in locomotion by V. panoptes during the dry season is extremely high for a reptile (mean of 3.5 h/day spent walking), and these results provide an ecological correlate to the high aerobic capacity found in laboratory measurements of some species of varanids.  相似文献   

12.
A laboratory scale upflow anaerobic sludge blanket (UASB) reactor was operated at 35 °C for over 200 days to investigate the granulation mechanism during tetrachloroethylene (TCE) biodegradation. Anaerobic, unacclimated sludge and glucose were used as seed and primary substrate, respectively. TCE-degrading granules developed after 1.5 months of start-up. They grew at an accelerated pace for 7 months. The TCE-degrading granules had a maximum diameter of 2.5 mm and specific methanogenic activity of 1.32 g chemical oxygen demand (COD) g–1 total suspended solid (TSS) day–1. 94% COD and 90% TCE removal efficiencies were achieved when the reactor was operating at loading rates as high as 160 mg TCE l–1 day–1 and 14 g COD l–1 day–1, after 230 days of continuous operation.  相似文献   

13.
The stylochid flatworm, Imogine mcgrathi was confirmed as a predator of the pteriid oyster Pinctada imbricata. Occurring at an average of 3.2 per oyster spat collector bag, the flatworms were found to consume oysters at a rate of 0.035–0.057 d–1 in laboratory trials. Predation was affected by flatworm size with larger worms capable of consuming larger oysters and of consuming greater dry weights of oyster flesh. Irrespective of flatworm size, predation was generally confined to oysters less than 40 mm in shell height. Although all predation occurred at night, shading flatworms during the day did not significantly increase the rate of predation, but there were significant increases in the dry weight of oyster meat consumed. As a means of controlling flatworm infestations, salt, brine baths (250 g kg–1) and freshwater baths were effective in killing I. mcgrathi. The ease of use of hyper- or hyposaline baths then encouraged assessments of I. mcgrathi halotolerance. The flatworms were exposed to solutions ranging in salinity from 0 to 250 g kg–1for periods of from 5 min to 3 h. Despite showing both behavioural and physiological signs of stress, I. mcgrathi survived the maximum exposure time of 3 h at salinities in the range 7.5–60 g kg–1, inclusive. Beyond this range, the duration of exposure tolerated by flatworms decreased until 0 and 250 g kg–1, at which the flatworms no longer survived the minimum tested exposure of 5 min. Thus, despite the significant impact of other stylochids on commercial bivalves, at their current prevalence, I. mcgrathi can be controlled by exposing them to hyper- and hyposaline baths for the culture of P. imbricata in Port Stephens, NSW, Australia.  相似文献   

14.
Owen  Jeffrey S.  Wang  Ming Kuang  Sun  Hai Lin  King  Hen Biau  Wang  Chung Ho  Chuang  Chin Fang 《Plant and Soil》2003,251(1):167-174
We used the buried bag incubation method to study temporal patterns of net N mineralization and net nitrification in soils at Ta-Ta-Chia forest in central Taiwan. The site included a grassland zone, (dominant vegetation consists of Yushania niitakayamensis and Miscanthus transmorrisonensis Hayata) and a forest zone (Tsuga chinensis var. formosana and Yushania niitakamensis). In the grassland, soil concentration NH4 + in the organic horizon (0.1–0.2 m) ranged from 1.0 to 12.4 mg N kg–1 soil and that of NO3 varied from 0.2 to 2.1 mg N kg–1 soil. In the forest zone, NH4 + concentration was between 2.8 and 25.0 mg N kg–1 soil and NO3 varied from 0.2 to 1.3 mg N kg–1 soil. There were lower soil NH4 + concentrations during the summer than other seasons. Net N mineralization was higher during the summer while net nitrification rates did not show a distinct seasonal pattern. In the grassland, net N mineralization and net nitrification rates were between –0.1 and 0.24 and from –0.04 to 0.04 mg N kg–1 soil day–1, respectively. In the forest zone, net N mineralization rates were between –0.03 and 0.45 mg N kg–1 soil day–1 and net nitrification rates were between –0.01 and 0.03 mg N kg–1 soil day–1. These differences likely result from differing vegetation communities (C3 versus C4 plant type) and soil characteristics.  相似文献   

15.
A meta-analysis was conducted to determine the maintenance energy requirements of adult dogs. Suitable publications were first identified, and then used to generate relationships amongst energy requirements, husbandry, activity level, methodology, sex, neuter status, dog size, and age in healthy adult dogs. Allometric equations for maintenance energy requirements were determined using log-log linear regression. So that the resulting equations could readily be compared with equations reported by the National Research Council, maintenance energy requirements in the current study were determined in kcal/kg0.75 body weight (BW). Ultimately, the data of 70 treatment groups from 29 publications were used, and mean (± standard deviation) maintenance energy requirements were 142.8±55.3 kcal.kgBW−0.75.day−1. The corresponding allometric equation was 81.5 kcal.kgBW−0.93.day−1 (adjusted R2 = 0.64; 70 treatment groups). Type of husbandry had a significant effect on maintenance energy requirements (P<0.001): requirements were greatest in racing dogs, followed by working dogs and hunting dogs, whilst the energy requirements of pet dogs and kennel dogs were least. Maintenance energy requirements were less in neutered compared with sexually intact dogs (P<0.001), but there was no effect of sex. Further, reported activity level tended to effect the maintenance energy requirement of the dog (P = 0.09). This review suggests that estimating maintenance energy requirements based on BW alone may not be accurate, but that predictions that factor in husbandry, neuter status and, possibly, activity level might be superior. Additionally, more information on the nutrient requirements of older dogs, and those at the extremes of body size (i.e. giant and toy breeds) is needed.  相似文献   

16.
Summary Pulmonary CO-diffusing capacity (D l CO), lung volume, pulmonary perfusion and O2-uptake were measured by non-invasive techniques in the lizardsVaranus exanthematicus andTupinambis teguixin (mean body weight 2.2 kg for both species).The CO-diffusing capacity was at 25–27°C 0.059 mlstpd·kg–1·min–1·Torr–1 inVaranus, which is 47% greater than the value of 0.040 mlstpd·kg–1·min–1·Torr–1 inTupinambis. The lung volume ofVaranus was 36 ml·kg–1 and that ofTupinambis 20 ml·kg–1. At 35–37°C the diffusing capacity of lizard lungs are about 25% of those for mammals of comparable size.InVaranus pulmonary CO-diffusing capacity increased with temperature from 0.027 mlstpd·kg–1·min–1·Torr–1 at 17–19 °C to 0.075 mlstpd·kg–1·min–1·Torr–1 at 35–37 °C. This change closely matched a concomitant increase of O2-uptake. Pulmonary perfusion increased from 27 ml·kg–1·min–1 to 55 ml·kg–1·min–1 within this temperature range.The study emphasizes that pulmonary diffusing capacity cannot be fully evaluated without information on pulmonary perfusion and O2-uptake. In reptiles and other ectotherms diffusing capacity must be reported at specified body temperature.  相似文献   

17.
Summary The influence of ambient temperature and water supply on water metabolism and O2-consumption was measured in rock hyraxes (Procavia habessinica).With ad libitum food and water (control), water turnover rates of hyraxes were significantly lower than the general eutherian mean; water turnover rates were 61.4, 44.1 and 55.1 ml·kg–0.82·24 h–1 at 20, 27 and 35°C respectively. When greens were fed ad libitum but no drinking water was given, water turnover rate at 20°C was twofold higher, but at 27 and 35°C it was similar to that in control experiments.Water turnover rates were significantly reduced when no drinking water and only 25 g greens per day were offered (25.8, 22.0 and 29.3 ml·kg–0.82·24 h–1 at 20, 27 and 35°C respectively). Highest urine osmolality (3,200 mosm·kg–1) was recorded at 20°C.Oxygen consumption under control conditions was 43% below that predicted on the basis of body weight for most eutherian mammals. The thermoneutral zone ranged from 27 to 35°C, and the basal metabolic rate was 165 kJ·kg–0.75·h–1.  相似文献   

18.
Individuals of the fairy shrimp, Branchinecta longiantenna, were subjected to 5 concentrations (0.1 to 15 mg l–1) of Pb in diluted habitat water at 13 °C. Lead concentrations (mg kg–1 wet weight) in the animals were determined at 2-day intervals by digestion in nitric acid followed by atomic absorption analysis. The shrimp were also subjected to 0.1 mg l–1 media of Cd and Zn, separately.Uptake rates by the fairy shrimp for the three metal ions at 0.1 mg l–1 were: 0.111, 0.0885, and 0.0460 mg kg–1 day–1 for Zn, Pb, and Cd, respectively. After 2 days in 1.0 mg l–1 Cd or Zn, the animals expired; but they surviced for 8 days in a 10 mg l–1 Pb medium and for 2 days in 25 mg l–1 Pb. Lead uptake demonstrated a linear dependence on the Pb concentration in the media.Shrimp survived at much higher tissue accumulations of Pb compared to Zn and Cd. Estimated lethal doses were 20, 1.2–2.4, and 0.4–1.4 mg kg–1 wet weight for Pb, Zn, and Cd, respectively. Pb was found to be at much lower concentration than Cd or Zn in the natural pond water but between Cd and Zn levels in the sediment. Thus Cd and Zn probably present a greater threat to B. longiantenna than Pb, although Pb may be in higher concentration in the environment.Contribution 47, Laboratory of Ecology, The Claremont Colleges, Claremont, CA 91711, USA. Send reprint requests to Clyde Eriksen.  相似文献   

19.
To determine if meconium fatty acid ethyl esters (FAEE) in rat pups is a good biomarker of prenatal exposure and effect to alcohol, three groups of pregnant rats were studied: one control (pair fed) and two treatment groups given 25% alcohol at 2.2 or 5.5 g−1 kg−1 d−1. The pups were delivered on day 20 and, for each dam, were separated into a male and female group. The body, brain, intestines, and placenta of the pups were obtained, weighed, and stored at −20°C. The pups’ intestines (as surrogate of meconium) from each group were pooled, and meconium was analyzed by gas chromatography/mass spectroscopy for FAEE. The meconium showed the following FAEE: ethyl palmitate, ethyl stearate, and ethyl linolenate and were only found in the alcohol-treated group and with high specificity but low sensitivity. Mean body weight of the pups was lower in the treatment groups compared to the control groups. Ethyl palmitate concentration correlated negatively to the pups’ mean body and brain weights. Therefore, ethyl palmitate, stearate, and linolenate, in meconium of rat pups prenatally exposed to alcohol, are useful biomarkers of prenatal alcohol exposure, with ethyl palmitate a good biomarker of adverse effect on the pups’ body and brain weight.  相似文献   

20.
Summary The diurnal course of the xylem water flow in a solitary Salix fragilis L. tree in a wet grassland was measured using the tissue heat-balance method. There was considerable variation due to meteorological factors. Maximum flow rate was 0.4 kg h-1 m-2 of crown projection area, or 5.9 kg h-1 kg-1 leaf dry weight. The daily total was 2.4 kg m-2 day-1 or 36 kg kg-1 day-1. Water flow decreased immediately at the tree base and at the branches after start of rain, and in a branch, after cutting it off: the time constant of the system was 600–700 s in both cases. The part of the crown oriented to the sun transpired up to ten times as much as the shaded part. Over 70% of the total cross-sectional area of the conductive xylem vessels of the trunk was used by the transpiration flow. The water content of the trunk tracked the diurnal changes of the xylem water flow rate with a short time-lag. During the day, 1% of the trunk volume was temporarily exploited as water reserve, an amount equalling 3% of daily water loss. The stereometric configuration of the crown significantly influenced its water loss. During the summer period, about 33 mature (polycormic) trees per ha may drain 100% of water consumed by the present-day sedge-grass marsh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号