首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The photosynthetic cyanobacterium Synechocystis sp. strain PCC6803 possesses homologs of known genes of the non-mevalonate 2-C-methyl-D-erythritol 2-phosphate (MEP) pathway for synthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Isoprenoid biosynthesis in extracts of this cyanobacterium, measured by incorporation of radiolabeled IPP, was not stimulated by pyruvate, an initial substrate of the MEP pathway in Escherichia coli, or by deoxyxylulose-5-phosphate, the first pathway intermediate in E. coli. However, high rates of IPP incorporation were obtained with addition of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (GA3P), as well as a variety of pentose phosphate cycle compounds. Fosmidomycin (at 1 micro M and 1 mM), an inhibitor of deoxyxylulose-5-phosphate reductoisomerase, did not significantly inhibit phototrophic growth of the cyanobacterium, nor did it affect [(14)C]IPP incorporation stimulated by DHAP plus GA3P. To date, it has not been possible to unequivocally demonstrate IPP isomerase activity in this cyanobacterium. The combined results suggest that the MEP pathway, as described for E. coli, is not the primary path by which isoprenoids are synthesized under photosynthetic conditions in Synechocystis sp. strain PCC6803. Our data support alternative routes of entry of pentose phosphate cycle substrates derived from photosynthesis.  相似文献   

2.
It is proposed that the lytB gene encodes an enzyme of the deoxyxylulose-5-phosphate (DOXP) pathway that catalyzes a step at or subsequent to the point at which the pathway branches to form isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A mutant of the cyanobacterium Synechocystis strain PCC 6803 with an insertion in the promoter region of lytB grew slowly and produced greenish-yellow, easily bleached colonies. Insertions in the coding region of lytB were lethal. Supplementation of the culture medium with the alcohol analogues of IPP and DMAPP (3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol) completely alleviated the growth impairment of the mutant. The Synechocystis lytB gene and a lytB cDNA from the flowering plant Adonis aestivalis were each found to significantly enhance accumulation of carotenoids in Escherichia coli engineered to produce these colored isoprenoid compounds. When combined with a cDNA encoding deoxyxylulose-5-phosphate synthase (dxs), the initial enzyme of the DOXP pathway, the individual salutary effects of lytB and dxs were multiplied. In contrast, the combination of lytB and a cDNA encoding IPP isomerase (ipi) was no more effective in enhancing carotenoid accumulation than ipi alone, indicating that the ratio of IPP and DMAPP produced via the DOXP pathway is influenced by LytB.  相似文献   

3.
Tocopherols, collectively known as vitamin E, are lipid-soluble antioxidants synthesized exclusively by photosynthetic organisms and are required components of mammalian diets. The committed step in tocopherol biosynthesis involves condensation of homogentisic acid and phytyl diphosphate (PDP) catalyzed by a membrane-bound homogentisate phytyltransferase (HPT). HPTs were identified from Synechocystis sp. PCC 6803 and Arabidopsis based on their sequence similarity to chlorophyll synthases, which utilize PDP in a similar prenylation reaction. HPTs from both organisms used homogentisic acid and PDP as their preferred substrates in vitro but only Synechocystis sp. PCC 6803 HPT was active with geranylgeranyl diphosphate as a substrate. Neither enzyme could utilize solanesyl diphosphate, the prenyl substrate for plastoquinone-9 synthesis. In addition, disruption of Synechocystis sp. PCC 6803 HPT function causes an absence of tocopherols without affecting plastoquinone-9 levels, indicating that separate polyprenyltransferases exist for tocopherol and plastoquinone synthesis in Synechocystis sp. PCC 6803. It is surprising that the absence of tocopherols in this mutant had no discernible effect on cell growth and photosynthesis.  相似文献   

4.
Isopentenyl diphosphate isomerase (IPPI) is an enzyme involved in the synthesis of juvenile hormone (JH) in the corpora allata (CA) of insects. IPPI catalyzes the conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP); afterward IPP and DMAPP condense in a head-to-tail manner to produce geranyl diphosphate (GPP), this head-to-tail condensation can be repeated, by the further reaction of GPP with IPP, yielding the JH precursor farnesyl diphosphate. An IPPI expressed sequence tag (EST) was obtained from an Aedes aegypti corpora-allata + corpora cardiaca library. Its full-length cDNA encodes a 244-aa protein that shows a high degree of similarity with type I IPPIs from other organisms, particularly for those residues that have important roles in catalysis, metal coordination and interaction with the diphosphate moiety of the IPP. Heterologous expression produced a recombinant protein that metabolized IPP into DMAPP; treatment of DMAPP with phosphoric acid produced isoprene, a volatile compound that was measured with an assay based on a solid-phase micro extraction protocol and direct analysis by gas chromatography. A. aegypti IPPI (AaIPPI) required Mg2+ or Mn2+ but not Zn2+ for full activity and it was entirely inhibited by iodoacetamide. Real time PCR experiments showed that AaIPPI is highly expressed in the CA. Changes in AaIPPI mRNA levels in the CA in the pupal and adult female mosquito corresponded well with changes in JH synthesis (Li et al., 2003). This is the first molecular and functional characterization of an isopentenyl diphosphate isomerase involved in the production of juvenile hormone in the CA of an insect.  相似文献   

5.
To investigate the unknown stereochemical course of the reaction catalyzed by the type-II isomerase, which interconverts isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), a sample of [1,2-(13)C2]-IPP stereospecifically labelled with 2H at C2 was prepared by incubating a D2O solution of (E)-4-hydroxy-3-methyl[1,2-(13)C2]but-2-enyl diphosphate with a recombinant IspH protein of Escherichia coli in the presence of NADH as a reducing agent and flavodoxin as well as flavodoxin reductase as auxiliary proteins. As monitored by 13C-NMR spectroscopy, treatment of the deuterated IPP with either type-I or type-II IPP isomerase resulted in the formation of DMAPP molecules retaining all the 2H label of the starting material. From the known stereochemical course of the type-I isomerase-catalyzed reaction, one has to conclude that the label introduced from D2O in the course of the IspH reaction resides specifically in the H(Si)-C2 position of IPP and that the two isomerases mobilize specifically the same H(Re)-C2 ligand of their common IPP substrate. The outcome of an additional experiment, in which unlabelled IPP was incubated in D2O with the type-II enzyme, demonstrates that the two isomerases also share the same preference in selecting for their reaction the (E)-methyl group of DMAPP.  相似文献   

6.
Open reading frame sll1556 in the cyanobacterium Synechocystis sp. strain 6803 encodes a putative type II isopentenyl diphosphate (IPP) isomerase. The His(6)-tagged protein was produced in Escherichia coli and purified by Ni(2+) chromatography. The homotetrameric enzyme required NADPH, flavin mononucleotide, and Mg(2+) for activity; K(m)(IPP) was 52 microM, and k(cat)(IPP) was 0.23 s(-1).  相似文献   

7.
An alternative mevalonate-independent pathway for isoprenoid biosynthesis has been recently discovered in eubacteria (including Escherichia coli) and plant plastids, although it is not fully elucidated yet. In this work, E. coli cells were engineered to utilize exogenously provided mevalonate and used to demonstrate by a genetic approach that branching of the endogenous pathway results in separate synthesis of the isoprenoid building units isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In addition, the IPP isomerase encoded by the idi gene was shown to be functional in vivo and to represent the only possibility for interconverting IPP and DMAPP in this bacterium.  相似文献   

8.
Rothman SC  Helm TR  Poulter CD 《Biochemistry》2007,46(18):5437-5445
Type II isopentenyl diphosphate (IPP) isomerase catalyzes the interconversion of IPP and dimethylallyl diphosphate (DMAPP). Although the reactions catalyzed by the type II enzyme and the well-studied type I IPP isomerase are identical, the type II protein requires reduced flavin for activity. The chemical mechanism, including the role of flavin, has not been established for type II IPP isomerase. Recombinant type II IPP isomerase from Thermus thermophilus HB27 was purified by Ni2+ affinity chromatography. The aerobically purified enzyme was inactive until the flavin cofactor was reduced by NADPH or dithionite or photochemically. The inactive oxidized flavin-enzyme complex bound IPP in a Mg2+-dependent manner for which KD approximately KmIPP, suggesting that the substrate binds to the inactive oxidized and active reduced forms of the protein with similar affinities. N,N-Dimethyl-2-amino-1-ethyl diphosphate (NIPP), a transition state analogue for the type I isomerase, competitively inhibits the type II enzyme, but with a much lower affinity. pH-dependent spectral changes indicate that the binding of IPP, DMAPP, and a saturated analogue isopentyl diphosphate promotes protonation of anionic reduced flavin. Electron paramagnetic resonance (EPR) and UV-visible spectroscopy show a substrate-dependent accumulation of the neutral flavin semiquinone during both the flavoenzyme reduction and reoxidation processes in the presence of IPP and related analogues. Redox potentials of IPP-bound enzyme indicate that the neutral semiquinone state of the flavin is stabilized thermodynamically relative to free FMN in solution.  相似文献   

9.
Isopentenyl diphosphate isomerase catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In eukaryotes, archaebacteria, and some bacteria, IPP is synthesized from acetyl coenzyme A by the mevalonate pathway. The subsequent isomerization of IPP to DMAPP activates the five-carbon isoprene unit for subsequent prenyl transfer reactions. In Escherichia coli, the isoprene unit is synthesized from pyruvate and glyceraldehyde-3-phosphate by the recently discovered nonmevalonate pathway. An open reading frame (ORF696) encoding a putative IPP isomerase was identified in the E. coli chromosome at 65.3 min. ORF696 was cloned into an expression vector; the 20.5 kDa recombinant protein was purified in three steps, and its identity as an IPP isomerase was established biochemically. The gene for IPP isomerase, idi, is not clustered with other known genes for enzymes in the isoprenoid pathway. E. coli FH12 was constructed by disruption of the chromosomal idi gene with the aminoglycoside 3'-phosphotransferase gene and complemented by the wild-type idi gene on plasmid pFMH33 with a temperature-sensitive origin of replication. FH12/pFMH33 was able to grow at the restrictive temperature of 44 degrees C and FH12 lacking the plasmid grew on minimal medium, thereby establishing that idi is a nonessential gene. Although the V(max) of the bacterial protein was 20-fold lower than that of its yeast counterpart, the catalytic efficiencies of the two enzymes were similar through a counterbalance in K(m)s. The E. coli protein requires Mg(2+) or Mn(2+) for activity. The enzyme contains conserved cysteine and glutamate active-site residues found in other IPP isomerases.  相似文献   

10.
In cyanobacteria many compounds, including chlorophylls, carotenoids, and hopanoids, are synthesized from the isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate. Isoprenoid biosynthesis in extracts of the cyanobacterium Synechocystis strain PCC 6803 grown under photosynthetic conditions, stimulated by pentose phosphate cycle substrates, does not appear to require methylerythritol phosphate pathway intermediates. The sll1556 gene, distantly related to type 2 IPP isomerase genes, was disrupted by insertion of a Kanr cassette. The mutant was fully viable under photosynthetic conditions although impaired in the utilization of pentose phosphate cycle substrates. Compared to the parental strain the Deltasll1556 mutant (i) is deficient in isoprenoid biosynthesis in vitro with substrates including glyceraldehyde-3-phosphate, fructose-6-phosphate, and glucose-6-phosphate; (ii) has smaller cells (diameter ca. 13% less); (iii) has fewer thylakoids (ca. 30% less); and (iv) has a more extensive fibrous outer wall layer. Isoprenoid biosynthesis is restored with pentose phosphate cycle substrates plus the recombinant Sll1556 protein in the Deltasll1556 supernatant fraction. IPP isomerase activity could not be demonstrated for the purified Sll1556 protein under our in vitro conditions. The reduction of thylakoid area and the effect on outer wall layer components are consistent with an impairment of isoprenoid biosynthesis in the mutant, possibly via hopanoid biosynthesis. Our findings are consistent with an alternate metabolic shunt for biosynthesis of isoprenoids.  相似文献   

11.
Zhang C  Liu L  Xu H  Wei Z  Wang Y  Lin Y  Gong W 《Journal of molecular biology》2007,366(5):1437-1446
Type I isopentenyl diphosphate (IPP): dimethylally diphosphate (DMAPP) isomerase is an essential enzyme in human isoprenoid biosynthetic pathway. It catalyzes isomerization of the carbon-carbon double bonds in IPP and DMAPP, which are the basic building blocks for the subsequent biosynthesis. We have determined two crystal structures of human IPP isomerase I (hIPPI) under different crystallization conditions. High similarity between structures of human and Escherichia coli IPP isomerases proves the conserved catalytic mechanism. Unexpectedly, one of the hIPPI structures contains a natural substrate analog ethanol amine pyrophosphate (EAPP). Based on this structure, a water molecule is proposed to be the direct proton donor for IPP and different conformations of IPP and DMAPP bound in the enzyme are also proposed. In addition, structures of human IPPI show a flexible N-terminal alpha-helix covering the active pocket and blocking the entrance, which is absent in E. coli IPPI. Besides, the active site conformation is not the same in the two hIPPI structures. Such difference leads to a hypothesis that substrate binding induces conformational change in the active site. The inhibition mechanism of high Mn(2+) concentrations is also discussed.  相似文献   

12.
A mevalonate-independent pathway for the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) that has been elucidated during the last decade is essential in plants, many eubacteria and apicomplexan parasites, but is absent in Archaea and animals. The enzymes of the pathway are potential targets for the development of novel antibiotic, antimalarial and herbicidal agents. This review is focused on the late steps of this pathway. The intermediate 2C-methyl-D-erythritol 2,4-cyclodiphosphate is converted into IPP and DMAPP via 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate by the consecutive action of the iron-sulfur proteins IspG and IspH. IPP and DMAPP can be interconverted by IPP isomerase which is essential in microorganisms using the mevalonate pathway, whereas its presence is optional in microorganisms using the non-mevalonate pathway. A hitherto unknown family of IPP isomerases using FMN as coenzyme has been discovered recently in Archaea and certain eubacteria.  相似文献   

13.
Isopentenyl diphosphate:dimethylallyl diphosphate (IPP:DMAPP) isomerase catalyses a crucial activation step in the isoprenoid biosynthesis pathway. This enzyme is responsible for the isomerization of the carbon-carbon double bond of IPP to create the potent electrophile DMAPP. DMAPP then alkylates other molecules, including IPP, to initiate the extraordinary variety of isoprenoid compounds found in nature. The crystal structures of free and metal-bound Escherichia coli IPP isomerase reveal critical active site features underlying its catalytic mechanism. The enzyme requires one Mn(2+) or Mg(2+) ion to fold in its active conformation, forming a distorted octahedral metal coordination site composed of three histidines and two glutamates and located in the active site. Two critical residues, C67 and E116, face each other within the active site, close to the metal-binding site. The structures are compatible with a mechanism in which the cysteine initiates the reaction by protonating the carbon-carbon double bond, with the antarafacial rearrangement ultimately achieved by one of the glutamates involved in the metal coordination sphere. W161 may stabilize the highly reactive carbocation generated during the reaction through quadrupole- charge interaction.  相似文献   

14.
The trans-polyisoprene compounds are synthesized by trans-isoprenyl diphosphate synthase (IDS) with consecutive condensation of isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP). The in vitro condensation by IDS does not proceed efficiently by hydrophobic interaction between IDS and the hydrocarbon of longer products. In the present study, the enzymatic synthesis of trans-polyisoprenyl diphosphates was attempted in an organic-aqueous dual-liquid phase system with thermostable enzymes obtained from Thermococcus kodakaraensis. The conversion from DMAPP to a longer-chain product was achieved in a dual-liquid phase system, and more than 80% of the products were recovered in the organic phase. When the mutant IDS-Y81S, in which Tyr81 is replaced with Ser, was used in the dual-phase system, productivity was enhanced about four times and the ratio of the longer-chain products was increased. Co-incubation of IPP isomerase from T. kodakaraensis with IDS or IDS-Y81S enabled the direct synthesis of polyisoprenyl diphosphates from IPPs.  相似文献   

15.
Farnesyl diphosphate synthase (FPPase) catalyzes chain elongation of the C(5) substrate dimethylallyl diphosphate (DMAPP) to the C(15) product farnesyl diphosphate (FPP) by addition of two molecules of isopentenyl diphosphate (IPP). The synthesis of FPP proceeds in two steps, where the C(10) product of the first addition, geranyl diphosphate (GPP), is the substrate for the second addition. The product selectivity of avian FPPase was altered to favor synthesis of GPP by site-directed mutagenesis of residues that form the binding pocket for the hydrocarbon residue of the allylic substrate. Amino acid substitutions that reduced the size of the binding pocket were identified by molecular modeling. FPPase mutants containing seven promising modifications were constructed. Initial screens using DMAPP and GPP as substrates indicated that two of the substitutions, A116W and N144'W, strongly discriminated against binding of GPP to the allylic site. These observations were confirmed by an analysis of the products from reactions with DMAPP in the presence of excess IPP and by comparing the steady-state kinetic constants for the wild-type enzyme and the A116W and N114W mutants.  相似文献   

16.
The type II isopentenyl diphosphate/dimethylallyl diphosphate isomerase (IDI-2) is a flavin mononucleotide (FMN)-dependent enzyme that catalyzes the reversible isomerization of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP), a reaction with no net change in redox state of the coenzyme or substrate. Here, UV-vis spectral analysis of the IDI-2 reaction revealed the accumulation of a reduced neutral dihydroflavin intermediate when the reduced enzyme was incubated with IPP or DMAPP. When IDI-2 was reconstituted with 1-deazaFMN and 5-deazaFMN, similar reduced neutral forms of the deazaflavin analogues were observed in the presence of IPP. Single turnover stopped-flow absorbance experiments indicated that this flavin intermediate formed and decayed at kinetically competent rates in the pre-steady-state and, thus, most likely represents a true intermediate in the catalytic cycle. UV-vis spectra of the reaction mixtures reveal trace amounts of a neutral semiquinone, but evidence for the presence of IPP-based radicals could not be obtained by EPR spectroscopy. Rapid-mix chemical quench experiments show no burst in DMAPP formation, suggesting that the rate determining step in the forward direction (IPP to DMAPP) occurs prior to DMAPP formation. A solvent deuterium kinetic isotope effect (D2OVmax = 1.5) was measured on vo in steady-state kinetic experiments at saturating substrate concentrations. A substrate deuterium kinetic isotope effect was also measured on the initital velocity (DVmax = 1.8) and on the decay rate of the flavin intermediate (Dks = 2.3) in single-turnover stopped-flow experiments using (R)-[2-2H]-IPP. Taken together, these data suggest that the C2-H bond of IPP is cleaved in the rate determining step and that general acid/base catalysis may be involved during turnover. Possible mechanisms for the IDI-2 catalyzed reaction are presented and discussed in terms of the available X-ray crystal structures.  相似文献   

17.
Activities of glucokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphoglucose isomerase, phosphofructokinase (PFK), enolase, pyruvate kinase (PK) and phosphoenolpyruvate (PEP) carboxylase were determined in extracts of photoautotrophic, mixotrophic, and heterotrophic cultures of Synechocystis sp. PCC 6803. Annotated genomes of Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 were analyzed for the respective predicted physical properties of each enzyme investigated here. Enzymatic activity was largely unaffected by nutritional mode, with the exception of glucokinase and PK whose activities were significantly elevated in heterotrophic cultures of Synechocystis sp. PCC 6803. PFK activity was insensitive to bacterial PFK-A (allosteric) effectors such as PEP, implying that Synechocystis PFK should be classified as a PFK-B (non-allosteric). Immunoblot and kinetic studies indicated that irrespective of nutritional mode, the Synechocystis PK corresponds to a PK-A (AMP activated) rather than PK-F (fructose-1,6-bisphosphate activated).  相似文献   

18.
Isopentenyl diphosphate (IPP):dimethylallyl diphosphate (DMAPP) isomerase is a key enzyme in the biosynthesis of isoprenoids. The reaction involves protonation and deprotonation of the isoprenoid unit and proceeds through a carbocationic transition state. Analysis of the crystal structures (2 A) of complexes of Escherichia coli IPP.DMAPPs isomerase with a transition state analogue (N,N-dimethyl-2-amino-1-ethyl diphosphate) and a covalently attached irreversible inhibitor (3,4-epoxy-3-methyl-1-butyl diphosphate) indicates that Glu-116, Tyr-104, and Cys-67 are involved in the antarafacial addition/elimination of protons during isomerization. This work provides a new perspective about the mechanism of the reaction.  相似文献   

19.
Isopentenyl diphosphate:dimethylallyl diphosphate (IPP:DMAPP) isomerase is a key enzyme in the biosynthesis of isoprenoids. The mechanism of the isomerization reaction involves protonation of the unactivated carbon-carbon double bond in the substrate. Analysis of the 1.97 A crystal structure of the inactive C67A mutant of E. coli isopentenyl diphosphate:dimethylallyl diphosphate isomerase complexed with the mechanism-based inactivator 3,4-epoxy-3-methyl-1-butyl diphosphate is in agreement with an isomerization mechanism involving Glu 116, Tyr 104, and Cys 67. In particular, the results are consistent with a mechanism where Glu116 is involved in the protonation step and Cys67 in the elimination step.  相似文献   

20.
Enzymatic and thermodynamic characteristics of type II isopentenyl diphosphate (IPP):dimethylallyl diphosphate (DMAPP) isomerase (Tk-IDI) from Thermococcus kodakaraensis, which catalyzes the interconversion of IPP and DMAPP, were examined. FMN was tightly bound to Tk-IDI, and the enzyme required NADPH and Mg2+ for the isomerization in both directions. The melting temperature (Tm), the change of enthalpy (deltaH(m)), and the heat capacity change (deltaC(p)) of Tk-IDI were 88.0 degrees C, 444 kJ mol(-1), and 13.2 kJ mol(-1) K(-1), respectively, indicating that Tk-IDI is fairly thermostable. Kinetic parameters dramatically changed when the temperature crossed 80 degrees C even though its native overall structure was stably maintained up to 90 degrees C, suggesting that local conformational change would occur around 80 degrees C. This speculation was supported by the result of the circular dichroism analysis that showed the shift of the alpha-helical content occurred at 80 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号