首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electron transfer from ubiquinol-2 to ferricytochrome c mediated by ubiquinol:cytochrome c oxidoreductase [E.C. 1.10.2.2] purified from beef heart mitochondria, which contained one equivalent of ubiquinone-10 (Q10), was investigated under initial steady-state conditions. The Q10-depleted enzyme was as active as the Q10-containing one. Double reciprocal plots for the initial steady-state rate versus one of the two substrates at various fixed levels of the other substrate gave parallel straight lines in the absence of any product. Intersecting straight lines were obtained in the presence of a constant level of one of the products, ferrocytochrome c. The other product, ubiquinone-2, did not show any significant effect on the enzymic reaction. Ferrocytochrome c non-competitively inhibited the enzymic reaction against either ubiquinol-2 or ferricytochrome c. These results indicate a Hexa-Uni ping-pong mechanism with one ubiquinol-2 and two ferricytochrome c molecules as the substrates, which involves the irreversible release of ubiquinone-2 as the first product and the irreversible isomerization between the release of the first ferrocytochrome c and the binding of the second ferricytochrome c. Considering the cyclic electron transfer reaction mechanism, this scheme suggests that the binding of quinone or quinol to the enzyme and electron transfer between the iron-sulfur center and cytochrome c1 are rigorously controlled by the electron distribution within the enzyme.  相似文献   

2.
1. The cyclic photosynthetic chain of Rhodobacter capsulatus has been reconstituted incorporating into phospholipid liposomes containing ubiquinone-10 two multiprotein complexes: the reaction center and the ubiquinol-cytochrome-c2 reductase (or bc1 complex). 2. In the presence of cytochrome c2 added externally, at concentrations in the range 10-10(4) nM, a flash-induced cyclic electron transfer can be observed. In the presence of antimycin, an inhibitor of the quinone-reducing site of the bc1 complex, the reduction of cytochrome b561 is a consequence of the donation of electrons to the photo-oxidized reaction center. At low ionic strength (10 mM KCl) and at concentrations of cytochrome c2 lower than 1 microM, the rate of this reaction is limited by the concentration of cytochrome c2. At higher concentrations the reduction rate of cytochrome b561 is controlled by the concentration of quinol in the membrane, and, therefore, is increased when the ubiquinone pool is progressively reduced. At saturating concentrations of cytochrome c2 and optimal redox poise, the half-time for cytochrome b561 reduction is about 3 ms. 3. At high ionic stength (200 mM KCl), tenfold higher concentrations of cytochrome c2 are required for promoting equivalent rates of cytochrome-b561 reduction. If the absolute values of these rates are compared with those of the cytochrome-c2-reaction-center electron transfer, it can be concluded that the reaction of oxidized cytochrome c2 with the bc1 complex is rate-limiting and involves electrstatic interactions. 4. A significant rate of intercomplex electron transfer can be observed also in the absence of cytochrome c2; in this case the electron donor to the recation center is the cytochrome c1 of the oxidoreductase complex. The oxidation of cytochrome c1 triggers a normal electron transfer within the bc1 complex. The intercomplex reaction follows second-order kinetics and is slowed at high ionic strength, suggesting a collisional interaction facilitated by electrostatic attraction. From the second-order rate constant of this process, a minimal bidimensional diffusion coefficient for the complexes in the membrane equal to 3 X 10(-11) cm2 s-1 can be evaluated.  相似文献   

3.
The steady-state kinetics of ubiquinol cytochrome c reductase was investigated in submitochondrial particles using ubiquinol-1 as electron donor in media of increasing viscosities obtained by water-polyethylene glycol mixtures. The minimum association rate constant, kmin = kcat/km, for cytochrome c was strongly viscosity dependent, whereas kmin for ubiquinol-1 was only weakly affected by viscosity. It is concluded that the interaction of cytochrome c with the membranous reductase is largely under diffusion control, whereas the oxidation of ubiquinol by the enzyme is not significantly controlled by diffusion in either the aqueous medium or the membrane. The results are compatible with the presence of a diffusion limited step in cytochrome c but not in ubiquinone in mitochondrial electron transfer.  相似文献   

4.
Flash-induced redox changes of b-type and c-type cytochromes have been studied in chromatophores from the aerobic photosynthetic bacterium Roseobacter denitrificans under redox-controlled conditions. The flash-oxidized primary donor P+ of the reaction center (RC) is rapidly re-reduced by heme H1 (Em,7 = 290 mV), heme H2 (Em,7 = 240 mV) or low-potential hemes L1/L2 (Em,7 = 90 mV) of the RC-bound tetraheme, depending on their redox state before photoexcitation. By titrating the extent of flash-induced low-potential heme oxidation, a midpoint potential equal to -50 mV has been determined for the primary quinone acceptor QA. Only the photo-oxidized heme H2 is re-reduced in tens of milliseconds, in a reaction sensitive to inhibitors of the bc1 complex, leading to the concomitant oxidation of a cytochrome c spectrally distinct from the RC-bound hemes. This reaction involves cytochrome c551 in a diffusional process. Participation of the bc1 complex in a cyclic electron transfer chain has been demonstrated by detection of flash-induced reduction of cytochrome b561, stimulated by antimycin and inhibited by myxothiazol. Cytochrome b561, reduced upon flash excitation, is re-oxidized slowly even in the absence of antimycin. The rate of reduction of cytochrome b561 in the presence of antimycin increases upon lowering the ambient redox potential, most likely reflecting the progressive prereduction of the ubiquinone pool. Chromatophores contain approximately 20 ubiquinone-10 molecules per RC. At the optimal redox poise, approximately 0.3 cytochrome b molecules per RC are reduced following flash excitation. Cytochrome b reduction titrates out at Eh < 100 mV, when low-potential heme(s) rapidly re-reduce P+ preventing cyclic electron transfer. Results can be rationalized in the framework of a Q-cycle-type model.  相似文献   

5.
Deletion of two of the major electron carriers, the reaction center-bound tetrahemic cytochrome and the HiPIP, involved in the light-induced cyclic electron transfer pathway of the purple photosynthetic bacterium, Rubrivivax gelatinosus, significantly impairs its anaerobic photosynthetic growth. Analysis on the light-induced absorption changes of the intact cells of the mutants shows, however, a relatively efficient photo-induced cyclic electron transfer. For the single mutant lacking the reaction center-bound cytochrome, we present evidence that the electron carrier connecting the reaction center and the cytochrome bc(1) complex is the High Potential Iron-sulfur Protein. In the double mutant lacking both the reaction center-bound cytochrome and the High Potential Iron-sulfur Protein, this connection is achieved by the high potential cytochrome c(8). Under anaerobic conditions, the halftime of re-reduction of the photo-oxidized primary donor by these electron donors is 3 to 4 times faster than the back reaction between P(+) and the reduced primary quinone acceptor. This explains the photosynthetic growth of these two mutants. The results are discussed in terms of evolution of the type II RCs and their secondary electron donors.  相似文献   

6.
A non-photosynthetic mutant (Ps-) of Rhodopseudomonas capsulata, designated R126, was analyzed for a defect in the cyclic electron transfer system. Compared to a Ps+ strain MR126, the mutant was shown to have a full complement of electron transfer components (reaction centers, ubiquinone-10, cytochromes b, c1, and c2, the Rieske 2-iron, 2-sulfur (Rieske FeS) center, and the antimycin-sensitive semiquinone). Functionally, mutant R126 failed to catalyze complete cytochrome c1 + c2 re-reduction or cytochrome b reduction following a short (10 microseconds) flash of actinic light. Evidence (from flash-induced carotenoid band shift) was characteristic of inhibition of electron transfer proximal to cytochrome c1 of the ubiquinol-cytochrome c2 oxidoreductase. Three lines of evidence indicate that the lesion of R126 disrupts electron transfer from quinol to Rieske FeS: 1) the degree of cytochrome c1 + c2 re-reduction following a flash is indicative of electron transfer from Rieske FeS to cytochrome c1 + c2 without redox equilibration with an additional electron from a quinol; 2) inhibitors that act at the Qz site and raise the Rieske FeS midpoint redox potential (Em), namely 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole or 3-alkyl-2-hydroxy-1,4-napthoquinone, have no effect on cytochrome c1 + c2 oxidation in R126; 3) the Rieske FeS center, although it exhibits normal redox behavior, is unable to report the redox state of the quinone pool, as metered by its EPR line shape properties. Flash-induced proton binding in R126 is indicative of normal functional primary (QA) and secondary (QB) electron acceptor activity of the photosynthetic reaction center. The Qc functional site of cytochrome bc1 is intact in R126 as measured by the existence of antimycin-sensitive, flash-induced cytochrome b reduction.  相似文献   

7.
The characteristics of the photocurrent response activated by continuous illumination of planar bilayer membranes containing bacterial reaction centers have been resolved by voltage clamp methods. The photocurrent response to a long light pulse consists of an initial spike arising from the fast, quasi-synchronous electron transfer from the reaction center bacteriochlorophyll dimer, BChl2, to the primary quinone QA. This is followed by a slow relaxation of the current to that promoted by secondary, asynchronous multiple electron transfers from the reduced cytochrome c through the reaction centers to the ubiquinone-10 pool. Currents derived from cytochrome c oxidation that occurs when cytochrome c is associated with the reaction center or when limited by diffusional interaction from solution are recognized. Changes of the ionic strength and pH in the aqueous phase, and the clamped membrane potential (+/- 150 mV), affect the electron-transfer rate between cytochrome c and BChl2. In contrast, the primary light-induced charge separation between BChl2 and QA, or electron transfer between QA on the ubiquinone pool are unaffected. During illumination of reaction center membranes supplemented with cytochrome c and a ubiquinone pool, there is a small but significant steady-state current which is considered to be caused by the re-oxidation of photoreduced quinone by molecular oxygen. In the dark, after illumination of reaction centers supplemented with cytochrome c and a ubiquinone pool, there is a small amount of reverse current resulting from the movement of charges back across the membrane. This reverse current is observed maximally after 400 ms illumination while prolonged illumination diminishes the effect. The source of this current is uncertain, but it is considered to be due to the flux of anionic semiquinone within the membrane profile; this may also be the species that interacts with oxygen giving rise to the steady-state current. It is postulated that when the reaction centers are contained in an alkane-containing phospholipid membrane, in contrast to the in vivo situation, the semiquinone anion formed in the QB site is not tightly bound to the site and can, by exchange-diffusion with the membrane-quinone pool, move away from the site and accumulate in the membrane. However, in the absence, more quantitative work superoxide anion, resulting from O2 interaction with semiquinone of QA, QB or pool cannot be excluded.  相似文献   

8.
(1) Purified bovine heart mitochondrial cytochrome b-c1 complex (ubiquinone-cytochrome c oxidoreductase) and photosynthetic reaction centres isolated from Rhodopseudomonas sphaeroides strain R-26 have been incorporated into lipid vesicles. In the presence of cytochrome c and ubiquinone-2, light activation caused a cyclic electron transfer involving both components. (2) Since cytochrome c is added outside the vesicles, it is both reduced by the cytochrome b-c1 complex and oxidised by the reaction centre on the outside of the vesicles. Ubiquinone-2, however, is reduced by the reaction centres at a site in contact with the inside of the vesicles, but the reduced form, ubiquinol-2, is oxidised by the cytochrome b-c1 complex at a site in contact with the outer aqueous phase. (3) In the presence of valinomycin plus K+, initiation of cyclic electron flow causes protons to move from inside the vesicles to the outer medium and the H +/2e- ratio was calculated to be close to 4.  相似文献   

9.
Gerencsér L  Laczkó G  Maróti P 《Biochemistry》1999,38(51):16866-16875
To understand the details of rate limitation of turnover of the photosynthetic reaction center, photooxidation of horse heart cytochrome c by reaction center from Rhodobacter spheroides in detergent dispersion has been examined by intense continuous illumination under a wide variety of conditions of cytochrome concentration, ionic strength, viscosity, temperature, light intensity, and pH. The observed steady-state turnover rate of the cytochrome was not light intensity limited. In accordance with recent findings [Larson, J. W., Wells, T. A., and Wraight, C. A. (1998) Biophys. J. 74 (2), A76], the turnover rate increased with increasing bulk ionic strength in the range of 0-40 mM NaCl from 1000 up to 2300 s(-)(1) and then decreased at high ionic strength under conditions of excess cytochrome and ubiquinone and a photochemical rate constant of 4500 s(-)(1). Furthermore, we found the following: (i) The contribution of donor (cytochrome c) and acceptor (ubiquinone) sides as well as the binding of reduced and the release of oxidized cytochrome c could be separated in the observed kinetics. At neutral and acidic pH (when the proton transfer is not rate limiting) and at low or moderate ionic strength, the turnover rate of the reaction center was limited primarily by the low release rate of the photooxidized cytochrome c (product inhibition). At high ionic strength, however, the binding rate of the reduced cytochrome c decreased dramatically and became the bottleneck. The observed activation energy of the steady-state turnover rate reflected the changes in limiting mechanisms: 1.5 kcal/mol at 4 mM and 5.7 kcal/mol at 100 mM ionic strength. A similar distinction was observed in the viscosity dependence of the turnover rate: the decrease was steep (eta(-)(1)) at 40 and 100 mM ionic strengths and moderate (eta(-)(0.2)) under low-salt (4 mM) conditions. (ii) The rate of quinone exchange at the acceptor side with excess ubiquinone-30 or ubiquinone-50 was higher than the cytochrome exchange at the donor side and did not limit the observed rate of cytochrome turnover. (iii) Multivalent cations exerted effects not only through ionic strength (screening) but also by direct interaction with surface charge groups (ion-pair production). Heavy metal ion Cd(2+) bound to the RC with apparent dissociation constant of 14 microM. (iv) A two-state model of collisional interaction between reaction center and cytochrome c together with simple electrostatic considerations in the calculation of rate constants was generally sufficient to describe the kinetics of photooxidation of dimer and cytochrome c. (v) The pH dependence of cytochrome turnover rate indicated that the steady-state turnover rate of the cytochrome under high light conditions was not determined by the isoelectric point of the reaction center (pI = 6. 1) but by the carboxyl residues near the docking site.  相似文献   

10.
To probe the functional role of a bound ubiquinone-8 in cytochrome bo-type ubiquinol oxidase from Escherichia coli, we examined reactions with ubiquinol-1 and dioxygen. Stopped-flow studies showed that anaerobic reduction of the wild-type and the bound ubiquinone-free (DeltaUbiA) enzymes with ubiquinol-1 immediately takes place with four kinetic phases. Replacement of the bound ubiquinone with 2,6-dibromo-4-cyanophenol (PC32) suppressed the anaerobic reduction of the hemes with ubiquinol-1 by eliminating the fast phase. Flow-flash studies in the reaction of the fully reduced enzyme with dioxygen showed that the heme b-to-heme o electron transfer occurs with a rate constant of approximately 1x10(4) s(-1) in all three preparations. These results support our previous proposal that the bound ubiquinone is involved in facile oxidation of substrates in subunit II and subsequent intramolecular electron transfer to low-spin heme b in subunit I.  相似文献   

11.
The Rieske iron-sulfur center in the photosynthetic bacterium Rhodopseudomonas sphaeroides appears to be the direct electron donor to ferricytochrome c2, reducing the cytochrome on a submillisecond timescale which is slower than the rapid phase of cytochrome oxidation (t 1/2 3-5 microseconds). The reduction of the ferricytochrome by the Rieske center is inhibited by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) but not by antimycin. The slower (102 ms) antimycin-sensitive phase of ferricytochrome c2 reduction, attributed to a specific ubiquinone-10 molecule (Qz), and the associated carotenoid spectral response to membrane potential formation are also inhibited by UHDBT. Since the light-induced oxidation of the Rieske center is only observed in the presence of antimycin, it seems likely that the reduced form of Qz (QzH2) reduces the Rieske Center in an antimycin-sensitive reaction. From the extent of the UHDBT-sensitive ferricytochrome c2 reduction we estimate that there are 0.7 Rieske iron-sulfur centers per reaction center. UHDBT shifts the EPR derivative absorption spectrum of the Rieske center from gy 1.90 to gy 1.89, and shifts the Em,7 from 280 to 350 mV. While this latter shift may account for the subsequent failure of the iron-sulfur center to reduce ferricytochrome c2, it is not clear how this can explain the other effects of the inhibitor, such as the prevention of cytochrome b reduction and the elimination of the uptake of HII(+); these may reflect additional sites of action of the inhibitor.  相似文献   

12.
(1) The role of the ubiquinone pool in the reactions of the cyclic electron-transfer chain has been investigated by observing the effects of reduction of the ubiquinone pool on the kinetics and extent of the cytochrome and electrochromic carotenoid absorbance changes following flash illumination. (2) In the presence of antimycin, flash-induced reduction of cytochrome b-561 is dependent on a coupled oxidation of ubiquinol. The ubiquinol oxidase site of the ubiquinol:cytochrome c(2) oxidoreductase catalyses a concerted reaction in which one electron is transferred to a high-potential chain containing cytochromes c(1) and c(2), the Rieske-type iron-sulfur center, and the reaction center primary donor, and a second electron is transferred to a low-potential chain containing cytochromes b-566 and b-561. (3) The rate of reduction of cytochrome b-561 in the presence of antimycin has been shown to reflect the rate of turnover of the ubiquinol oxidase site. This diagnostic feature has been used to measure the dependence of the kinetics of the site on the ubiquinol concentration. Over a limited range of concentration (0-3 mol ubiquinol/mol cytochrome b-561), the kinetics showed a second-order process, first order with respect to ubiquinol from the pool. At higher ubiquinol concentrations, other processes became rate determining, so that above approx. 25 mol ubiquinol/mol cytochrome b-561, no further increase in rate was seen. (4) The kinetics and extents of cytochrome b-561 reduction following a flash in the presence of antimycin, and of the antimycin-sensitive reduction of cytochrome c(1) and c(2), and the slow phase of the carotenoid change, have been measured as a function of redox potential over a wide range. The initial rate for all these processes increased on reduction of the suspension over the range between 180 and 100 mV (pH 7). The increase in rate occurred as the concentration of ubiquinol in the pool increased on reduction, and could be accounted for in terms of the increased rate of ubiquinol oxidation. It is not necessary to postulate the presence of a tightly bound quinone at this site with altered redox properties, as has been previously assumed. (5) The antimycin-sensitive reactions reflect the turnover of a second catalytic site of the complex, at which cytochrome b-561 is oxidized in an electrogenic reaction. We propose that ubiquinone is reduced at this site with a mechanism similar to that of the two-electron gate of the reaction center. We suggest that antimycin binds at this site, and displaces the quinone species so that all reactions at the site are inhibited. (6) In coupled chromatophores, the turnover of the ubiquinone reductase site can be measured by the antimycin-sensitive slow phase of the electrochromic carotenoid change. At redox potentials higher than 180 mV, where the pool is completely oxidized, the maximal extent of the slow phase is half that at 140 mV, where the pool contains approx. 1 mol ubiquinone/mol cytochrome b-561 before the flash. At both potentials, cytochrome b-561 became completely reduced following one flash in the presence of antimycin. The results are interpreted as showing that at potentials higher than 180 mV, ubiquinol stoichiometric with cytochrome b-561 reaches the complex from the reaction center. The increased extent of the carotenoid change, when one extra ubiquinol is available in the pool, is interpreted as showing that the ubiquinol oxidase site turns over twice, and the ubiquinone reductase sites turns over once, for a complete turnover of the ubiquinol:cytochrome c(2) oxidoreductase complex, and the net oxidation of one ubiquinol/complex. (7) The antimycin-sensitive reduction of cytochrome c(1) and c(2) is shown to reflect the second turnover of the ubiquinol oxidase site. (8) We suggest that, in the presence of antimycin, the ubiquinol oxidase site reaches a quasi equilibrium with ubiquinol from the pool and the high- and low-potential chains, and that the equilibrium constant of the reaction catalysed constrains the site to the single turnover under most conditions. (9) The results are discussed in the context of a detailed mechanism. The modified Q-cycle proposed is described by physicochemical parameters which account well for the results reported.  相似文献   

13.
Ubiquinol oxidase has been reconstituted from ubiquinol-cytochrome c reductase (Complex III), cytochrome c and cytochrome c oxidase (Complex IV). The steady-state level of reduction of cytochrome c by ubiquinol-2 varies with the molar ratios of the complexes and with the presence of antimycin in a way that can be quantitatively accounted for by a model in which cytochrome c acts as a freely diffusible pool on the membrane. This model was based on that of Kröger & Klingenberg [(1973) Eur. J. Biochem. 34, 358-368] for ubiquinone-pool behaviour. Further confirmation of the pool model was provided by analysis of ubiquinol oxidase activity as a function of the molar ratio of the complexes and prediction of the degree of inhibition by antimycin.  相似文献   

14.
The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for the primary electron transfer reaction through an effect on the reduction potential of the primary donor. A lowering of the redox potential of the primary donor due to the presence of the core antenna is consistently observed in a series of reaction center mutants in which the reduction potential of the primary donor was varied over a 130 mV range. Estimates of the magnitude of the change in driving force for charge separation from time-resolved delayed fluorescence measurements in the mutant reaction centers suggest that the mutations exert their effect on the driving force largely through an influence on the redox properties of the primary donor. The results demonstrate that the energetics of light-driven electron transfer in reaction centers are sensitive to the environment of the complex, and provide indirect evidence that the kinetics of electron transfer are modulated by the presence of the LH1 antenna complexes that surround the reaction center in the natural membrane.  相似文献   

15.
The catalytic mechanism of O2 reduction by cytochrome oxidase was studied in isolated mitochondria and mitoplasts by partial reversal of the reaction. At a high redox potential (Eh) of cytochrome c, high pH, and a high electrochemical proton gradient (delta mu H+) across the inner mitochondrial membrane, the initial ferriccupric state (O) of the oxidized enzyme's bimetallic oxygen reaction center is converted to ferryl (F) and peroxy (P) intermediates, the optical spectroscopic properties of which are reported in detail. This is associated with reversed electron transfer from the bimetallic center to ferricytochrome c. The kinetics of reduction of ferricytochrome c by the reversed electron transfer process are compared with the kinetics of formation of F and P. The results are consistent with transfer of one electron from the ferric-cupric bimetallic center (O) to cytochrome c, yielding the F intermediate, followed by transfer of one electron from the latter to cytochrome c, yielding the P state. In the absence of an effective redox buffer, poising cytochrome c highly oxidized, these primary events are immediately followed by reoxidation of cytochrome c, which is ascribed to forward electron transfer to enzyme molecules still in the O state. This forward reaction also results in accumulation of the P intermediate. Kinetic stimulations of the data predict equilibrium constants for the reversed electron transfer steps, and Em,7 values of approximately 1.1 and 1.2 V may be calculated for the F/O and P/F redox couples, respectively, at delta mu H+ and delta psi equal to zero. Taken together with previously measured Em,7 values, these data indicate that it is the two-electron reduction of bound dioxygen to bound peroxide that is responsible for the irreversibility of the catalytic dioxygen cycle of cell respiration.  相似文献   

16.
Although the energy conserving membranes of the photosynthetic bacterium Rhodopseudomonas sphaeroides contain a 25 (+/- 3)-fold molar excess of ubiquinone over the photochemical reaction center, the activity of the ubiquinone-cytochrome b-c2 oxidoreductase is unaffected by quinone extraction until only 3, or at most 4, ubiquinones remain; only then does further extraction prevent the function of the oxidoreductase. Since 2 of these last ubiquinones are integral parts of the photochemical reaction center, we conclude that the ubiquinone-cytochrome b-c2 oxidoreductase requires only 1, or at most 2, molecules of ubiquinone-10 for its function. Earlier kinetic data identified a major electron donor to ferricytochrome c2 as a single molecule (known as Z) which requires 2 electrons and 2 protons for its equilibrium reduction. Hence, we identify a single molecule of quinone, probably ubiquinone-10 in a special environment, as a major electron donor to ferricytochrome c2 in the ubiquinone cytochrome b-c2 oxidoreductase.  相似文献   

17.
P Joliot  A Verméglio  A Joliot 《Biochemistry》1990,29(18):4355-4361
Light-induced oxidation of the primary electron donor P and of the secondary donor cytochrome c2 was studied in whole cells of Rhodospirillum rubrum in the presence of myxothiazole to slow down their reduction. 1. The primary and secondary electron donors are close to thermodynamic equilibrium during continuous illumination when the rate of the electron transfer is light-limited. This implies a long-range thermodynamic equilibration involving the diffusible cytochrome c2. A different behavior is observed with Rhodobacter sphaeroides R26 whole cells, in which the cytochrome c2 remains trapped within a supercomplex including reaction centers and the cytochrome b/c complex [Joliot, P., et al. (1989) Biochim. Biophys. Acta 975, 336-345]. 2. Under weak flash excitation, the reduction kinetics of the photooxidized primary donor are nearly exponential with a half-time in the hundred microseconds time range. 3. Under strong flash excitation, the reduction of the photooxidized primary donor follows a second-order kinetics. About half of the photooxidized primary donor is reduced in a few milliseconds while the remainder stays oxidized for hundreds of milliseconds despite an excess of secondary donors in their reduced form. The flash intensity dependence of the amplitude of the slow phase of P+ reduction is proportional to the square of the fraction of reaction centers that have undergone a charge separation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.  相似文献   

19.
1. The kinetics of cytochrome b reduction and oxidation in the ubiquinone-cytochrome b/c2 oxidoreductase of chromatophores from Rhodopseudomonas sphaeroides Ga have been measured both in the presence and absence of antimycin, after subtraction of contributions due to absorption changes from cytochrome c2, the oxidized bacteriochlorophyll dimer of the reaction center, and a red shift of the antenna bacteriochlorophyll. 2. A small red shift of the antenna bacteriochlorophyll band centered at 589 nm has been identified and found to be kinetically similar to the carotenoid bandshift. 3. Antimycin inhibits the oxidation of ferrocytochrome b under all conditions; it also stimulates the amount of single flash activated cytochrome b reductions 3- to 4-fold under certain if not all conditions. 4. A maximum of approximately 0.6 cytochrome b-560 (Em(7) = 50 mV, n = 1, previously cytochrome b50) hemes per reaction center are reduced following activating flashes. This ratio suggests that there is one cytochrome b-560 heme functional per ubiquinone-cytochrome b/c2 oxidoreductase. 5. Under the experimental conditions used here, only cytochrome b-560 is observed functional in cyclic electron transfer. 6. We describe the existence of three distinct states of reduction of the ubiquinone-cytochrome b/c2 oxidoreductase which can be established before activation, and result in markedly different reaction sequences involving cytochrome b after the flash activation. Poising such that the special ubiquinone (Qz) is reduced and cytochrome b-560 is oxidized yields the conditions for optimal flash activated electron transfer rates through the ubiquinone-cytochrome b/c2 oxidoreductase. However when the ambient redox state is lowered to reduce cytochrome b-560 or raised to oxidize Qz, single turnover flash induced electron transfer through the ubiquinone-cytochrome b/c2 oxidoreductase appears impeded; the points of the impediment are tentatively identified with the electron transfer step from the reduced secondary quinone (QII) of the reaction center to ferricytochrome b-560 and from the ferrocytochrome b-560 to oxidized Qz, respectively.  相似文献   

20.
We have investigated the organisation of the photosynthetic apparatus in Phaeospirillum molischianum, using biochemical fractionation and functional kinetic measurements. We show that only a fraction of the ATP-synthase is present in the membrane regions which contain most of the photosynthetic apparatus and that, despite its complicated stacked structure, the intracytoplasmic membrane delimits a single connected space. We find that the diffusion time required for a quinol released by the reaction centre to reach a cytochrome bc1 complex is about 260 ms. On the other hand, the reduction of the cytochrome c chain by the cytochrome bc1 complex in the presence of a reduced quinone pool occurs with a time constant of about 5 ms. The overall turnover time of the cyclic electron transfer is about 25 ms in vivo under steady-state illumination. The sluggishness of the quinone shuttle appears to be compensated, at least in part, by the size of the quinone pool. Together, our results show that P. molischianum contains a photosynthetic system, with a very different organisation from that found in Rhodobacter sphaeroides, in which quinone/quinol diffusion between the RC and the cytochrome bc1 is likely to be the rate-limiting factor for cyclic electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号