共查询到20条相似文献,搜索用时 0 毫秒
1.
Q. Chen J. Jahier Y. Cauderon 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1992,84(5-6):698-703
Summary Intergeneric hybrids between Triticum aestivum cv Chinese Spring and Agropyron cristatum 4x (2n= 5x=35, ABDPP genomes) with a high level of homoeologous meiotic pairing between the wheat chromosomes were backcrossed 3 times to wheat. Pollination of the F1 hybrid with Chinese Spring resulted in 22 BC1 seeds with an average seed set of 1.52%. Five BC1 plants with 39–41 chromosomes were raised using embryo rescue techniques. Chromosome pairing in the BC1 was characterized by a high frequency of multivalent associations, but in spite of this there was no evidence of homoeologous pairing between chromosomes of wheat and those of Agropyron. All of the plants were self sterile. The embryo rescue technique was again essential to produce 39 BC2 plants with chromosome numbers ranging from 37 to 67. The phenomenon of meiotic non-reduction was also observed in the BC3 progenies. In this generation male and female fertility greatly increased, and meiotic pairing was fairly regular. Some monosomic (2n=43) and double monosomic (2n=44) lines were produced. Analysis of these progenies should permit the extraction of the seven possible wheat-Agropyron disomic addition lines including those with the added chromosomes carrying the genes involved in meiotic non-reduction and in suppression of Ph activity. 相似文献
2.
L. H. Li Y. S. Dong 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1991,81(3):312-316
Summary Intergeneric hybrids between Triticum aestivum cv Chinese Spring (2n=6x=42, AABBDD) and Agropyron michnoi Roshev. (2n=4x=28, PPPP) were obtained by embryo culture. Their spike characteristics were similar to those of common wheat but, unlike their parents, they were long-awned. The average meiotic chromosome pairing at MI of F1 hybrids was: 6.39 I +3.75 rodII+8.64 ringII+0.81 III+0.30 IV+0.04 V, the bivalent and multivalent formation of which was much higher than expected from the genomic formulae. It is especially worthwhile to note that the F1 hybrids were self-fertile, self set being 0.15%, and seeds were easily obtained from the backcross of f1 plants with hexaploid and tetraploid wheats; here the seed set was more than 20.0%. The polyploid taxa and the position of A. Michnoi in Agropyron are discussed. 相似文献
3.
H. C. Sharma P. S. Baenziger 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1986,71(5):750-756
Summary Intergeneric hybrids were produced between common wheat, Triticum aestivum (2n=6x=42, AABBDD) and wheatgrass, Etymus caninus (Agropyron caninum) (2n=4x=28, SSHH) — the first successful report of this cross. Reciprocal crosses and genotypes differed for percent seed set, seed development and F1 hybrid plant production. With E. caninus as the pollen parent, there was no hybrid seed set. In the reciprocal cross, seed set was 23.1–25.4% depending upon wheat genotype used. Hybrid plants were produced only by rescuing embryos 12–13 days post pollination with cv Chinese Spring as the wheat parent. Kinetin in the medium facilitated embryo germination but inhibited root development and seedling growth. The hybrids were vigorous, self sterile, and intermediate between parents. These had expected chromosome number (2n=5x=35, ABDSH), very little chromosome pairing (0.51 II, 0.04 III) and some secondary associations. The hybrids were successfully backcrossed with wheat. Chromosome number in the BC1 derivatives varied 54–58 with 56 as the modal class. The BC1 derivatives showed unusually high number of rod bivalents or reduced pairing of wheat homologues. These were sterile and BC2 seed was produced using wheat pollen. 相似文献
4.
P. K. Gupta G. Fedak 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1985,70(3):265-270
Summary Hybrids were produced from crossing Hordeum vulgare, H. bogdanii, Agropyron caninum and × Triticosecale onto H. parodii (6x or 4x). The rates at which hybrids were produced, expressed in terms of plantlet establishment as percent pollinated florets, ranged from 0.47%, (6x H.parodii × 6x × Triticosecale cv. Welsh) to 6.3% (4x H. parodii × 2x H. vulgare cv. Betzes). Based on frequencies of paired configurations at MI, autosyndetic pairing appeared to be promoted by the presence of a Secale cereale genome but suppressed by the genome of H. vulgare.Contribution No. 759 Ottawa Research Station 相似文献
5.
G. Fedak C. Nakamura 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1981,60(6):349-352
Summary Intergeneric hybrids between Triticum crassum (2n=6x=42) and Hordeum vulgare cv. Bomi were obtained at a frequency of 15% of pollinated florets. Meiotic chromosome pairing in the hybrids was not different from that observed in a polyhaploid of T. crassum indicating negligible pairing between chromosomes of the two species and secondly that the genome of H. vulgare had no effect on intergenomic pairing in T. crassum.Contribution No. 646 Ottawa Research Station 相似文献
6.
A. Mujeeb-Kazi S. Roldan D. Y. Suh N. Ter-Kuile S. Farooq 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,77(2):162-168
Summary Intergeneric hybrids between Triticum aestivum L. and conventional rhizomatous Agropyron species were produced in variable frequencies. They were recovered in high percentage frequencies for T. aestivum cultivars with A. acutum (14.6%), A. intermedium (48.0%), A. pulcherrimum (53.3%), and A. trichophorum (46.6%). The crossability percentages with the highly crossable cultivar Chinese Spring for these Agropyron species accessions were 33.12%, 65.0%, 53.3%, and 65.4%, respectively. Autosyndetic associations of two of their three genomes gave mean meiotic chromosome association data of 17.0 I (univalents) +1.53 II (ring bivalents) + 7.04 II (rod bivalents) +1.43 III (trivalents) +0.05 IV (quadrivalents) +0.01 IV (pentavalents) for A. acutum and of 21.8 I + 1.56 II (rings) +7.22 II (rods) +0.84 III + 0.04 IV for A. intermedium. Chromosome pairing at metaphase I was comparatively lower for A. pulcherrimum (34.4 I + 0.2 II (rings) +3.4 II (rods) +0.14 III) and A. trichophorum (36.7 I + 0.35 II (rings) +2.26 II (rods) + 0.04 III) hybrids with T. aestivum. Hybrids of wheat with A. campestre and A. repens were obtained in low frequency. Direct crossing did not permit T. aestivum/ A. desertorum hybridization. However, by utilizing the 2n=10x=70 A. repens/A. desertorum amphiploid as the pollen source, hybridization with T. aestivum did indeed occur. Aneuploidy was prevalent in this hybrid combination while all other hybrid combinations were apparently normal. 相似文献
7.
S. L. K. Hsam F. J. Zeller 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1982,63(3):213-217
Summary The relationships of Agropyron intermedium chromosomes in two wheat-Agropyron addition series were determined. Chromosome pairing behaviour revealed that the alien chromosome in lines TAF-2 and L7 of Vilmorin-A. intermedium set are homologous to the alien chromosomes in lines P and C of the Caribo-A. intermedium set respectively. Localization of alcohol dehydrogenase isozyme genes in Vilmorin-Agropyron addition line L4 and in Caribo-Agropyron line O indicated relationships with wheat chromosomes of homoeologous group 4. 相似文献
8.
A. Plourde A. Comeau G. Fedak C. A. St-Pierre 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,78(3):436-444
Summary Hybrid plants were obtained between Triticum aestivum (2n=6x=42, AABBDD) and Leymus innovatus (2n=4x=28, JJNN) at a frequency varying from 0.4% to 1.2% of the pollinated florets. Improvement of the embryo culture medium resulted in a higher frequency of embryo rescue. Eight of ten hybrids had the expected chromosome number of 35 (ABDJN). Meiotic analysis indicated that there was no homology between the genomes of the two species. Two hybrids had only 28 chromosomes. Comparison of chromosome pairing between the two types of hybrids suggested that Leymus innovatus carries genes that affect chromosome pairing and behavior. The relatively high occurrence of spontaneous doubling in the meiocytes of these hybrids may indicate that backcrossing of the hybrids to wheat should be possible, although frequent chromosome irregularities observed in the meiocytes of the hybrids may decrease the probability of success of this step, which is essential to the process of gene transfer from L. innovatus to wheat.Contrib. no. 366 相似文献
9.
H. R. Gundimeda Shyam Prakash K. R. Shivanna 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1992,83(5):655-662
Summary Attempts were made to produce intergeneric hybrids between Enarthrocarpus lyratus, a wild species, and several species of crop brassicas: B. campestris, B. nigra, B. oleracea, B. juncea, B. napus and B. Carinata. Hybrids using E. lyratus as female parent were realized by means of embryo rescue in four combinations — E. lyratus x B. campestris, E. lyratus x B. oleracea, E. lyratus x B. napus and E. lyratus x B. carinata. Reciprocal crosses showed strong pre-fertilization barriers and yielded no hybrids except in one combination — B. Juncea x E. Lyratus — in which a single hybrid could be realized. All of the hybrids were multiplied in vitro through the multiplication of axillary shoots. Morphological and cytological studies confirmed hybridity. All hybrids were completely pollen sterile except for E. lyratus x B. carinata, which showed 2% pollen fertility. Attempts to double the chromosome number through the in vitro application of colchicine to axillary meristems of F1 hybrids were successful in only one hybrid, E. lyratus x B. oleracea. Cytological studies of the hybrids indicated the presence of a partial homology between the genomes of E. lyratus and crop brassicas. Backcross progenies were raised from all of the five F1 hybrids to develop malesterile alloplasmic lines. 相似文献
10.
C. Nakamura S. Yamakawa T. Suzuki 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1991,81(4):514-518
Summary Alloplasmic common wheat (Triticum aestivum L. cultivais Penjamo 62 and Siete Cerros 66) with cytoplasms of wheatgrass (Agropyron trichophorum and Ag. glaucum) showed two aberrant phenotypes, i.e., gross reduction in plant vigor and male sterility. Plant vigor and male fertility were restored by cytoplasm-specific telocentric chromosomes (telosomes). Studies on carbon assimilation and consumption and on oxygen evolution and uptake showed that maximum rates of apparent photosynthesis were significantly lower in the alloplasmic lines than in their corresponding euplasmic lines and that the telosomes restored a normal level of photosynthesis. The decreased apparent photosynthetic rates in the alloplasmic lines were shown to be not due to decreased rates of true photosynthesis but to increased rates of dark respiration in the green leaves. In contrast, dark respiration in the roots was significantly low in the alloplasmic lines. The alloplasmic lines also showed decreased rates of respiratory consumption of new photosynthates. These results suggest that growth depression and male sterility in the alloplasmic lines are related to aberrant mitochondrial function, which is compensated for by cytoplasm-specific telosomes. 相似文献
11.
G. L. Brown-Guedira E. D. Badaeva B. S. Gill T. S. Cox 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,93(8):1291-1298
Whether the two tetraploid wheat species, the well known Triticum turgidum L. (macaroni wheat, AABB genomes) and the obscure T. timopheevii Zhuk. (AtAtGG), have monophyletic or diphyletic origin from the same or different diploid species presents an interesting evolutionary problem. Moreover, T. timopheevii and its wild form T. araraticum are an important genetic resource for macaroni and bread-wheat improvement. To study these objectives, the substitution and genetic compensation abilities of individual T. timopheevii chromosomes for missing chromosomes of T. aestivum Chinese Spring (AABBDD) were analyzed. Chinese Spring aneuploids (nullisomic-tetrasomics) were crossed with a T. timopheevii x Aegilops tauschii amphiploid to isolate T. timopheevii chromosomes in a monosomic condition. The F1 hybrids were backcrossed one to four times to Chinese Spring aneuploids without selection for the T. timopheevii chromosome of interest. While spontaneous substitutions involving all At- and G-genome chromosomes were identified, the targeted T. timopheevii chromosome was not always recovered. Lines with spontaneous substitutions from T. timopheevii were chosen for further backcrossing. Six T. timopheevii chromosome substitutions were isolated: 6At (6A), 2G (2B), 3G (3B), 4G (4B), 5G (5B) and 6G (6B). The substitution lines had normal morphology and fertility. The 6At of T. timopheevii was involved in a translocation with chromosome 1G, resulting in the transfer of the group-1 gliadin locus to 6At. Chromosome 2G substituted for 2B at a frequency higher than expected and may carry putative homoeoalleles of gametocidal genes present on group-2 chromosomes of several alien species. Our data indicate a common origin for tetraploid wheat species, but from separate hybridization events because of the presence of a different spectrum of intergenomic translocations. 相似文献
12.
Sadao Sakamoto 《Journal of plant research》1982,95(4):375-383
To explore the cytogenetical relationships ofElymus andAgropyron of the tribe Triticeae, Gramineae, two species of AsiaticElymus, E. sibiricus (2n=28) andE. dahuricus (2n=42), and a JapaneseAgropyron, A. tsukushiense (2n=42) were crossed. Pentaploid and hexaploid F1 hybrids were vigorous. All pollen grains were aborted and none of the hybrids produced seed.
For the crossE. sibiricus × A. tsukushiense, the average chromosome pairing per cell at the MI of the PMCs in the F1 was 16.38 univalents, 8.93 bivalents, 0.25 trivalents and 0.01 quadrivalents; for the crossE. dahuricus × A. tsukushiense, it was 4.41 univalents, 17.67 bivalents, 0.32 trivalents, 0.28 quadrivalents and 0.04 quinquevalents; and for the crossE. dahuricus × E. sibiricus, it was 17.11 univalents, 8.74 bivalents, 0.04 trivalents and 0.07 quadrivalents. From the present results, it is concluded
thatE. sibiricus contains one genome andE. dahuricus contains two genomes, which are homologous to those ofA. tsukushiense, and that the third genome ofE. dahuricus might be partially homologous to the remaining genome ofA. tsukushiense. This conclusion is also supported by the cytogenetical analysis ofE. dahuricus × E. sibiricus.
Contribution No. 27 from the Plant Germ-plasm Institute, Faculty of Agriculture, Kyoto University, Kyoto, Japan. 相似文献
13.
S. Taketa J. Kato K. Takeda 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,91(8):1203-1209
Four bread wheat (Triticum aestivum L.) cultivars, Aobakomugi, Chinese Spring, Norin 61 and Shinchunaga, were pollinated with five barley lines/cultivars consisting of three cultivated barley (Hordeum vulgare L.) lines, Betzes, Kinai 5 and OHL089, and two wild barley (Hordeum spontaneum C. Koch) lines, OUH602 and OUH324. Crossability, expressed as the percentage of embryo formation, varied from 0 to 55.4% among the cross combinations. The two wild barley lines generally had a higher crossability than the previously reported best pollinator, Betzes, and some Japanese wheat cultivars were better as the female parent than Chinese Spring. Ninety four hybrid plants were obtained from 250 embryos cultured, and their somatic chromosome numbers ranged from 21 to 36. Eighteen plants were mosaic in chromosome number. Twenty one-chromosome plants appeared most frequently (45.7%) followed by 28-chromosome plants (14.9%). C-banding analysis revealed that elimination of barley chromosomes was mainly responsible for the occurrence of aneuploid plants. In hypoploids derived from Betzes-crosses, chromosome 5 was preferentially eliminated as previously reported, while in hypoploids derived from OUH602-crosses, chromosome 4 was preferentially eliminated. The wild barley line OUH602 may be a useful parent for producing a new wheat-barley addition set because of its high crossability with wheat and a different pattern of chromosome elimination. 相似文献
14.
Wheat spikelets detached from the spike at anthesis were cultured on solidified media and successfully produced mature grains. These grains resembled normal grains and contained well-developed, embryos. Lower concentrations of glutamine favored dry weight increase in developing grains. Such grains were indistinguishable from grains from greenhouse-grown plants in germination on moist blotting sheets. The technique of individual spikelet culture can be used to study physiology and development of wheat grains and kernels and to study host-pathogen interactions in wheat floret diseases such as Karnal bunt. 相似文献
15.
普通小麦和新麦草属间杂种的产生及细胞遗传学研究 总被引:17,自引:0,他引:17
进行了普通小麦和华山新麦草属间杂交,运用杂种幼胚培养技术,首次成功地获得了它们的属间杂种。F_1形态趋于中间型,均完全不育。F_1花粉母细胞预期类型(2n=28)的减数分裂中期Ⅰ平均染色体配对构型为26.72Ⅰ+0.62Ⅱ+0.01Ⅲ,后期Ⅰ和后期Ⅱ有落后染色体,多分体具大量微核。结果表明普通小麦和华山新麦草的染色体组间不存在同源或部分同源性。还观察到花粉母细胞异常减数分裂现象。用普通小麦回交,未获得回交后代。 相似文献
16.
17.
P. P. Jauhar 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1992,84(5-6):511-519
Summary In an attempt to transfer genes for salt tolerance and other desirable traits from the diploid wheatgrasses, Thinopyrum bessarabicum (2n=2x=14; JJ genome) and Lophopyrum elongatum (2n=2x=14; EE genome), into durum wheat cv Langdon (2n=4x=28; AABB genomes), trigeneric hybrids with the genomic constitution ABJE were synthesized and cytologically characterized. C-banding analysis of somatic chromosomes of the A, B, J, and E genomes in the same cellular environment revealed distinct banding patterns; each of the 28 chromosomes could be identified. They differed in the total amount of constitutive heterochromatin. Total surface area and C-banded area of each chromosome were calculated. The B genome was the largest in size, followed by the J, A, and E genomes, and its chromosomes were also the most heavily banded. Only 25.8% of the total chromosome complement in 10 ABJE hybrids showed association, with mean arm-pairing frequency (c) values from 0.123 to 0.180 and chiasma frequencies from 3.36 to 5.02 per cell. The overall mean pairing was 0.004 ring IV + 0.046 chain IV + 0.236 III + 0.21 ring II + 2.95 rod II + 20.771. This is total pairing between chromosomes of different genomes, possibly between A and B, A and J, A and E, B and J, B and E, and J and E, in the presence of apparently functional pairing regulator Ph1. Because chromosome pairing in the presence of Ph1 seldom occurs between A and B, or between J and E, it was inferred that pairing between the wheat chromosomes and alien chromosomes occurred. The trigeneric hybrids with two genomes of wheat and one each of Thinopyrum and Lophopyrum should be useful in the production of cytogenetic stocks to facilitate the transfer of alien genes into wheat. 相似文献
18.
An efficient method for in vitro regeneration from immature inflorescence explants of Canadian wheat cultivars 总被引:1,自引:0,他引:1
Caswell Karen L. Leung Nick L. Chibbar Ravindra N. 《Plant Cell, Tissue and Organ Culture》2000,60(1):69-73
Fertile, green plants were regenerated from immature inflorescence explants from each of four Canadian wheat cultivars. The cultivars were representative of four classes of Canadian wheat. Explants from immature inflorescences of three size ranges were cultured on two types of media: MSI/MSR, which contains 1650 mg l-1 NH4NO3and sucrose as a carbon source, and BII/BIR, which contains 250 mg l-1 NH4NO3and maltose as a carbon source. Regeneration from all cultivars was significantly better on BII/BIR media than on MSI/MSR media. On BII/BIR media, `AC Karma', `Plenty', and `Fielder' gave the highest number of shoots per 10 explants, where the explants were derived from immature inflorescences 5.1 to 10.0 mm in length. 'Columbus' did not regenerate on MSI/MSR medium, and regenerated poorly on BII/BIR medium. Differences were found between cultivars with regard to the number of regenerant plants produced with the best treatments: `Plenty' produced 16.1 shoots per 10 explants, `AC Karma' 12.4, `Fielder' 6.4, and `Columbus' 2.2. 相似文献
19.
Recent advances in wheat transformation 总被引:9,自引:0,他引:9
Vasant janakiraman Martin Steinau Serena B. McCoy Harold N. Trick 《In vitro cellular & developmental biology. Plant》2002,38(5):404-414
Summary Since the first report of wheat transformation in the early 1990s, genetic engineering of wheat has evolved rapidly. Several
laboratories worldwide have reported the production of fertile transgenic wheat plants using a variety of methods. While there
are several innovative and promising approaches for wheat transformation using different explants as targets for transformation,
different methods of transformation, and different selection schemes, the most common approach to wheat transformation is
the bombardment of tissue derived from immature embryos followed by selection based on resistance to the bar gene. Even with all these successful reports, hurdles still exist for this recalcitrant crop. Of these hurdles, low transformation
rates, tools for transgene expression, and transgene silencing in subsequent generations are probably the most critical. This
review will provide an overview of wheat transformation in the past decade, addressing both positive and negative factors
that effect transformation while highlighting the successes of the past and prospects for the future. 相似文献
20.
In this paper, we describe how Bupleurum scorzonerifolium/Triticum aestivum asymmetric somatic hybrids can be exploited to study the wheat genome. Protoplasts of B. scorzonerifolium Willd were irradiated with ultraviolet light (UV) and fused with protoplasts of common wheat (T. aestivum L.). All cell clones were similar in appearance to those of B. scorzonerifolium, while the regenerated plantlets were either intermediate or B. scorzonerifolium-like. Genotypic screening using isozymes showed that 39.3% of cell clones formed were hybrid. Some of the hybrid cell clones grew vigorously, and differentiated green leaves, shoots or plantlets. DNA marker analysis of the hybrids demonstrated that wheat DNA was integrated into the nuclear genomes of B. scorzonerifolium and in situ karyotyping cells revealed that a few wheat chromosome fragments had been introgressed into B. scorzonerifolium. The average wheat SSR retention frequency of the RH panel was 20.50%, but was only 6.67% in fusions with a non-irradiated donor. B. scorzonerifolium chromosomes and wheat SSR fragments in most asymmetric hybrid cell lines remained stable over a period of 2.5–3.5 years. We suggest the UV-induced asymmetric somatic hybrids between B. scorzonerifolium Willd and T. aestivum L. have the potential for use in the construction of an RH map of the wheat genome. 相似文献